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Preface to the Second Edition 

The first edition of this book was published by Elsevier as Volume 10 of Elsevier Ocean 

Engineering Book series edited by R. Bhattacharyya and M. E. McCormick. 

Originally, this book was the second part of the two-volume monograph united under the 

common title Stability and Safety of Ships. The first part was published as Volume 9 of 

Elsevier Ocean Engineering Book series with the subtitle “Regulation and Operation” 

authored by Kobylinski and Kastner. It described the state of the art and historic 

perspective of intact stability regulations as well as covered the operational aspect of ship 

stability. Volume 10, subtitled “Risk of Capsizing,” contained descriptions of 

contemporary approaches and solutions for evaluation of dynamic stability as well as a 

detailed review of the research results in the field and was meant to serve as an extended 

reference source for the development of future intact stability regulations. Both parts 

were written with the same philosophy but could be read separately. 

The appearance of new types of naval and commercial vessels with unconventional 

dynamics in waves made conventional methods of evaluation of dynamic stability 

unreliable for the most part, as these methods are based on previous experience and 

statistics. It is well known that the best approach is to use the physically sound solution 

for ship motion in waves employing Nonlinear Dynamics and theory of stochastic 

processes. This allows developing new views on different types of stability failures 

including capsizing in dead ship conditions, surf-riding and broaching, parametric 

resonance and pure loss of stability on the wave crest. The above approach has defined 

the increased interest of maritime industry to the problems of ship dynamics. 

Understanding the importance of these problems motivated IMO to resume discussion on 

new approaches to intact stability regulations in 2002.

Among the naval architects whose research results and organizational efforts determined 

these new views in recent years, I would like to mention: P. R. Alman, H. P. Cojeen, 

J. O. de Kat, A. Francescutto, Y. Ikeda, L. Kobylinski, M. A. S. Neves, J. R. Paulling, 

L. Peres Rojas, P. Purtell, A. M. Reed, R. Sheinberg, K. Spyrou, A. W. Troesch, 

N. Umeda and D. Vassalos.

This list, of course, is far from being complete, so I would like to ask those colleagues 

who were not mentioned in this list to accept my sincere apology. 

To assist this development the Society of Naval Architects and Marine Engineers 

(SNAME) decided to publish a second edition of Volume 10 since the first edition is out 

of print. Volume 9 remains available. I am very grateful to R. Bhattacharyya, W. France, 

S. Evans Grove and R. Tagg for their help with organization of the second edition.

My special thanks are due for William Belknap, Michael Hughes and Arthur Reed for 

their detailed review of Chapter 3, for Marcello Neves for his thorough review of Chapter 

4 and for Yury Nechaev for additional corrections to regression coefficients in 

Appendix I.
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The second edition is almost an exact reproduction of the first edition with the exception 

of corrected typographical errors, updated text for some chapters to account for the most 

recent development in parametric roll and numerical simulation of irregular roll motions. 

Corresponding updates were made in the list of references. 

I am grateful to all my colleagues, discussions with whom were very helpful in updating 

the book, in particular: G. Bulian, A. Degtyarev, P. Handler, B. Hutchison, B. Johnson, 

W. M. Lin, L. McCue, K. Metselaar, W. Peters, and K. Weems. 

The author considers it as a pleasant duty to thank management and employees of the 

American Bureau of Shipping and first of all: G. Ashe, R. I. Basu, A. J. Breuer, 

C. J. Dorchak, T. Gruber, T. Ingram, B. Menon, D. Novak and H. Yu – all of whom 

shared the author’s interest to the problems of ship dynamics and made possible for the 

author to continue working in this direction, including publication of the second edition 

of this book. 

Language editing of the second edition was performed by Robert M. Conachey, whose 

efforts are greatly appreciated. 

V. Belenky 

April 2007 

The views and opinions expressed in this book are solely and strictly those of the authors and do not 

necessarily reflect those of American Bureau of Shipping, its affiliates, subsidiaries or any of their 

respective officers, employees or agents or Kaliningrad University of Technology. 
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Chapter 1  

Philosophy of Probabilistic Evaluation of Stability and Safety 

1.1 General Concepts of Probabilistic Evaluation of Stability, Safety and Risk at Sea 

It is clear from the review [Blagoveshchensky, 1932, 1951; Lugovsky, 1971, Rahola, 

1935, 1939] of the existing national and international practices of stability standardization 

that the development of stability standards was initiated by experts in the theory of naval 

architecture. Therefore, this problem is usually considered by naval architects and 

seamen as an aspect of the theory of ships. However, it is not quite so. 

The final goal of setting ships' stability standards is to ensure their safe operation without 

fatal capsizing casualties during their service lives. Similar tasks are considered 

practically concerning any other products of technology, see [Sevastianov, 1982]. Indeed, 

if we substitute in the former sentence the word "stability" for the word "strength" and the 

word "capsizing" for the word "failure" then the aim of standardization will be changed 

in a specific technical aspect. However, the very essence of setting standards will remain 

the same: to ensure operation of some object (product, system, etc.) without failure 

during a given time. Only the nature, the causes and the form of the failure are specific.  

Failures in a complicated system may occur both in the system as a whole and in some of 

its elements. This should be especially borne in mind when we are developing the 

standards of sea-keeping qualities. Such failures as capsizing, foundering, loss of 

longitudinal strength practically mean the total loss of the system called a vessel. Damage 

to the propeller, steering engine or hatch cover does not mean the immediate total loss of 

a vessel, as a rule, although sometimes they may happen to be an important link in the 

chain of events which result in the total loss of the vessel. In our further consideration of 

stability we shall deal only with such failures as capsizing or catastrophic heeling. 

First of all, it is necessary to consider the general plan of any standardization. It can be 

represented as a set of the following four sub-problems: 

1. The definition of the aims of standardization, 

2. The choice of criteria, 

3. The setting of the norm (standard) for each criterion, 

4. The evaluation of the likelihood of achieving the goal and the technical and 

economical consequences of implementing standards. 
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Defining the aims of standardization for a specific regulation (stability, strength, noise 

suppression of radio equipment, etc.) is connected first of all with social requirements. 

It may be narrowed to mentioning only such dangerous or undesirable events, the risk of 

which should be lowered to zero or to an acceptable level. We shall call such dangerous 

events "casualties" or "capsizing". 

The goal of any standard is preventing certain types of casualties with certain objects 

during a certain time interval. Such an interval may be determined as the duration of a 

missile’s flight to the target or the navigation period up and down the rivers which 

become frozen in winter, or lifetime of a vessel from its launch until it is sold for scrap 

metal. 

The choice of criteria is a specific task for each type of casualty. The word "criterion” in 

Greek means "an instrument for judgment". We shall examine and use the criteria for 

estimating how great the risk of a casualty is. It has become a custom in modern practice 

to judge the possibility of casualties not by a single criterion but by a set of some criteria. 

Apparently, the characteristics chosen as criteria should be functions of properties of the 

object itself. Besides the arguments determining the criterion, its value should take into 

consideration the external condition parameters under which the object operates. As far 

as this concerns stability such conditions should include the forces affecting the vessel, 

their orientation, dynamic or static application as well as the ability of the crew to 

maintain the necessary safety level. Simple and effective stability control methods are 

very important in this respect. Therefore, it is clear that the sub-task of criteria choice 

necessitates participation of such experts who know in detail the properties of the 

corresponding objects and their operational conditions. 

The setting of the norms is the indication of some conventional boundary between the 

permissible and impermissible values of the criteria, that is between the points "good" 

and "bad" for providing stability. 

It is obvious that the risk of capsizing will change continuously with continuous 

alteration of the usual stability criteria. Unfortunately, the actual interdependence 

between the risk and practical stability criteria cannot be expressed in explicit form by a 

simple formula. It exists as a rule in a latent, implicit form. This problem will be 

discussed in detail below. 

We will consider a simple example explaining the nature of usual stability norms. 

Let us imagine an ordinary deckless vessel or a boat affected by a static heeling moment, 

Mh . 

It is clear that the full loss of stability may occur after flooding the internal volume of the 

boat whilst heeling. It is possible to suggest an angle of heel , as a criterion of stability. 

In the framework of initial stability theory this angle may be expressed by the elementary 

metacentric formula: 

GMW

M h  , 

Where W is the vessel's displacement and GM is the initial metacentric height. 
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Would it be reasonable to adopt as a norm the angle of inclination, f, corresponding to 

the immersion of the lowest point of the vessel's freeboard? A “pure" theoretician would 

probably agree with such a suggestion. Really, at the angle of heel  < f the boat has 

some residual freeboard and water cannot enter into the vessel. Nevertheless it is not 

necessary to be a seaman to have some doubts about the practicality of such a norm. We 

shall not criticize this norm for the inaccuracy of the metacentric formula at large angles 

of heel. Indeed, it is possible to find the angle  more precisely on the basis of a stability 

diagram if the heeling moment, Mh is known. But who can guarantee proper accuracy of 

the assigned moment Mh or of the initial value of the actual freeboard? Are we sure of the 

fact that all the mistakes will always increase safety? And what is the practical validity of 

the implicit assumption about heeling under the condition of absolutely still water? That's 

why even in the simplest example it is impossible to accept the value f as a practical 

norm though it is theoretically an indisputable boundary between zero risk and the 

situation when the boat is doomed to perish. It would be reasonable to introduce some 

reserve into the norms foreseeing the unpredictable random external conditions (sea state, 

ship motion, etc.) and inaccuracy of the given initial data. In other words, we have to 

insure ourselves against our own ignorance of all the actual circumstances of the situation 

being considered. That is another matter that we can introduce such a reserve in an 

explicit or in an implicit form, and it is clear that the magnitude of this reserve depends 

on the factors and circumstances which lie beyond the framework of ordinary theory with 

its deterministic approach. 

The last sub-task of setting the safety standard concerns the evaluation of the guarantee of 

safety, which should be ensured by the standards being suggested. It also concerns 

foreseeing technical and economic consequences of introducing these standards. 

It should be noted that practical implementation of various seakeeping standards has not 

yet raised the problem of guarantee in its explicit form. 

Probably the experts faced this problem for the first time while developing the IMO 

Stability Recommendations. This problem is rather new and practically important. 

Therefore, we shall consider it and its history in detail. 

The draft of the IMO Stability Recommendations was developed in 1967. The interested 

countries tried to evaluate the acceptability of this draft on the basis of the numerous 

stability calculations made for their ships. These were in accordance with the criteria and 

norms suggested by IMO [1967a], resolutions A-167 and A-168. Maritime Authorities of 

countries, which had already used their own national stability regulations, compared the 

results of such calculations with the stability estimations made in compliance with 

existing regulations. They found out that the stability of some vessels, which were 

considered safe, was deemed insufficient according to the IMO draft. At the same time, 

in the Intact Stability Casualty Records, there were found several vessels which perished 

though their stability was considered sufficient according to the IMO draft. The 

comparison of the results obtained in different countries did not give any definite answer 

even to a rather trivial question: which of the existing stability standards are more strict 

and which ones are less so? The answers obtained by different countries did not coincide 

in some cases. 
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No doubt the clear understanding of the contradiction in the balance of merits and 

demerits caused by introducing new stability standards was a significant achievement of 

IMO. The economic cost and other difficulties were evident. First, they were connected 

with the ballasting of many vessels (decreasing their dead-weight); recalculations of 

stability according to new requirements; a greater number of inclining tests; the issue of 

the new information on stability properties for many vessels. All these consequences 

require rather significant expenses. For many developing countries these expenses would 

increase still more due to the necessity to invite foreign experts to carry out the 

corresponding calculations and tests. However, there has never existed any method for 

evaluating how far the risk of capsizing can be reduced by introducing new stability 

standards. 

The deadlock, which arose in further IMO activities for developing Stability 

Recommendations, was overcome due to the coincidence of three circumstances. First, 

some dramatic casualties took place late in the 1960’s with Russian, English, Japanese, 

Canadian and other countries fishing vessels, particularly under the conditions of severe 

icing. The 19th of January 1965, was a dark day in the history of the Russian fishing 

fleet. Four medium-sized fishing trawlers were lost during one night in the Bering Sea, 

where more than one hundred vessels were catching herring. The catastrophe was caused 

by heavy icing. 

These and similar accidents were a powerful incentive for the Maritime Administrations 

to concentrate their efforts on stability problems and on the development of reliable 

stability standards. 

The second important reason for further IMO activities was the fact that by 1968 IMO 

had completed an unprecedented five-year collection of Intact Stability Casualty Records. 

The majority of IMO members were engaged in this work. No separate country would be 

able to collect such a representative set of statistical data concerning the stability 

characteristics of lost vessels and the circumstances of their loss. The stability casualty is 

generally fatal not only for the ship itself, but also for the crew and the passengers. As a 

rule, there are no surviving witnesses. In the case of the four Russian trawlers, only one 

man was taken alive from the bottom of the capsized trawler "Boxitogorsk" which was 

floating with its keel up. The other 96 crew members of these vessels perished with their 

ships.

These Casualty Records gave the basic data for collective investigations by German and 

Polish experts and for their suggestions on the stability criteria and norms. These 

suggestions were then submitted in 1967 as the first draft of the IMO Stability 

Recommendations for cargo, passenger and fishing vessels, [IMO, 1967], IMO 

resolutions A-167 and A-168. 

In 1968, the Russian delegation in the IMO Working Group on Safety of Fishing Vessels 

suggested its method for comparison of rigidity and effectiveness of various stability 

criteria and norms [Sevastianov, 1968a; IMO, 1967a]. The method uses the concept of 

the so-called "critical" height of the vessel's centre of gravity above a baseline. This 

concept is very convenient for the comparison with the results achieved in accordance 

with different sets of stability criteria and norms. The same unified measure of stability 

was applied to compare the actual stability of capsized vessels with that stability level 
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which would be a sufficient minimum for the same vessels in accordance with various 

stability standards. The detailed description and foundations of these vessels were 

published in Russian journals and books [Sevastianov, 1968a, 1970]. As far as we know, 

some concepts were introduced there for the first time. One of these concepts was an 

average reserve provided by the given stability standard

n

x

x

n

i

i

1  (1.1) 

Where: i=1,2,3,... n is an index of a certain vessel in the list of the lost vessels; n is the 

total number of the vessels in the list; 

cri

crii
i

KG

KGKG
x  (1.2) 

The sign of the fi -value is to be determined by the numerator of this fraction. 

It is obvious that, if xi > 0 the lost vessel's stability would be recognized insufficient in 

accordance with the given standard (KGi > KGcri) and such a conclusion would be 

justified by the fact of the loss. But the inequality xi < 0 means an error of the given 

standards because the stability of this capsized vessel would be evaluated as quite 

sufficient.

It is evident that those standards which give less scatter (variance) of their values xi are 

more relevant to the real circumstances of vessel loss. That's why it was possible to 

suggest a special measure of inadequacy for any stability standards. This measure is the 

standard deviation 

1
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n

xx
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i

x  (1.3) 

The introduction of the concepts of a mean stability reserve x  and x lead to one more 

concept, namely a concept of the ideal stability standard. Such an imaginary standard 

would be able to predict for all registered stability casualties the true "critical" KG - 

values, that is just those values which actually took place at the moment of loss of the 

perished vessels. These predicted KGcri -values would exactly correspond to the 

circumstances of each casualty. In other words, such ideal standards applied to the lost 

vessels would give the values: 

0
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Of course, such ideal standards should take into account the smallest variations of any 

arguments and parameters influencing stability in any imaginable situation. But we must 

admit that mankind will hardly be able to compile such precise equations of ship motion, 

such detailed descriptions of external forces and in addition to have at its disposal a 

sufficient number of absolutely precise and detailed stability casualty records. This is 

why it is impossible to achieve such an ideal standard in practice. However, it is equally 

true for any other ideal concepts; for example, for the ideal fluid, ideal propeller or ideal 

thermodynamic cycle in combustion engines. Nevertheless, this consideration does not 

make such ideal concepts useless because they indicate those limits, which cannot be 

exceeded by efforts of human wisdom and inventiveness. In any case, the ideal models 

permit comparison of the suitability of different approximate standards, mathematical 

models of a fluid, construction of machines and propulsive devices. 

It was found that, in particular, that the set of xi - values taken from a sufficient number 

of capsized vessels may give the evaluation of some conventional guarantee of safety, 

which is provided by the given set of stability criteria and norms. 

Such a conventional guarantee is the average probability of safe navigation of a vessel 

belonging to a fleet. This fleet consists of vessels of the same type, which are included in 

the list of casualty records. It is also supposed that the vessels of this fleet keep - 

permanently - the position of their centers of gravity at the height which is critical for 

each of them in accordance with the given stability standard and its criteria and norms. 

Such a conventional guarantee can be calculated if one knows the law of distribution of 

the xi values besides the x  and x values. In the terms of the theory of probability and 

mathematical statistics it means that we consider the total number of casualties as a set of 

test results in which the random continuous variable f was realized in the values of xi . A 

special checking procedure was carried out in accordance with so called 
2
-criterion of 

compliance. It confirmed that normal (Gaussian) distribution law might be used with an 

acceptable degree of accuracy to express the distribution of x.  The density of distribution 

in accordance with the normal law may be written in the form 

2

2

2

)(

2

1
)( x

xx

x

exf  (1.7) 

The curves in Fig. 1.1 show the normal distribution obtained on the basis of IMO Intact 

Stability Casualty Records [Sevastianov, 1970] for fishing vessels. Curve N 1 

corresponds to IMO Stability Recommendations for Fishing Vessels, [IMO, 1968]. Curve 

N 3 is drawn for a simplified stability criterion (see formula 1.19 below), which was 

discussed at an early stage of IMO activity. Curve N 2 is calculated according to the 

Rules for Classification and Construction of Seagoing Steel Vessels issued by the 

Russian Register in 1967. 
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Fig 1.1 Normal distribution of accidental value xi:

1.- IMO Stability recommendation, 1968. 2.- Draft Stability Standards of the Russian Register, 1967. 

3.- Simplified criterion, formula (1.19). 

It is useful to recall that the law of distribution of random variables may be written in an 

integral form: 

dxxfxP
x

)()(   (1.8) 

If the probability density f x  corresponds to the normal law (1.7) then: 
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The function P(x) may be interpreted as the probability of such an accidental event, 

which is to be determined by the double inequality: 

xxi  (1.10) 

Here xi is any x -value chosen at random and: 

 )()( xxPxP i  (1.11) 

The integral (1.9) may be calculated by numerical methods or by application of so called 

Laplace function or by the integral of probability tabulated in the mathematical manuals. 
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0  (1.14) 

Thus the value of P x 0  expresses the probability of an event that the value of x will be 

within the interval 0ix  , that is xi chosen at random will be negative.  

The value of P x  is given by the formula: 

xx

xx
xxxP 1

2

1
)(

2

1
)0(  (1.15) 

We have already come to the conclusion that a value xi  means an error for the given 

stability standard. Such a standard would consider the corresponding capsized vessel 

quite stable since its actual height of the centre of gravity was below the critical value at 

the time of loss. Therefore, the probability of P x 0  is a measure of unreliability for 

such a standard. Then the probability of correct sign of xi

)0(1 xP  (1.16) 

It may be called a conventional guarantee of safety provided by the given stability 

standard. By using the word "conventional" we must bear in mind some special meaning. 

We assume that the master of a ship thoroughly controls the height of the actual centre of 

gravity of his vessel to prevent its shifting above the critical level KGcr determined by the 

given stability standard. It means that at any moment the following inequality takes place:  

criKGKG  (1.17) 

If we assume that the real guarantee would be greater than the conventional one, then the 

conventional guarantee may be considered as an estimation of the minimal value of a real 

guarantee which is provided by the given stability standard. Fig. 1.2 shows the curves 

P x  for the stability requirements of the Russian Register (curve 1), for the IMO 

Recommendations, 1968 (curve 2, fishing vessels) and for two rather simple but primitive 

standards N1 and N2 which were considered at the very beginning of the discussion on 

Stability Recommendations. These two standards may be reduced to the setting of the 

critical initial metacentric height values: 

m,035.020.01
f

B
GM cr  (1.18) 

m,035.050.02
f

B
GM cr  (1.19) 

Here: GMcr1 is the critical (the least permissible) initial metacentric height in accordance 

with the first variant of the standard (1.18); GMcr2 is the same for the second variant 

(1.19); B is breadth of a vessel amidships; f is the least actual freeboard value in the given 

loading conditions. Other particulars of size and form of a vessel are not taken into 
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account by these variants of suggested standards. Table 1.1 contains calculated numerical 

characteristics x , x , P x=0  and  . 

Fig. 1.2 clearly shows that a high value of guarantee,  may be achieved by two 

alternative methods. 

The first method suggests improving the stability standard by the minimization of its 

measure of inadequacy x, that is by reducing as close to zero as is possible (see 

formula 1.15). For a constant value x , x decreases, the slope of the curves P x  increase 

and the conventional safety guarantee is tending to the ideal value 1 (Fig. 1.2). 

Fig. 1.2 Integral distribution law of the accidental value x

1.- Draft Stability Standards of the Russian Register 2 .-  IMO Stability recommendation, 1968., 

1967. 3.- Simplified criterion, formula (1.18). 3.- Simplified criterion, formula (1.19). 5.-”Ideal” 

Standards 

The second advantage of this method is that the average reserve x  may be decreased 

with decreasing x-value at a constant or even increased value .

These advantages make the first method of improving stability standards the most 

rational.

The second method is much simpler, but not so rational. It may be implemented by 

assigning more conservative norms for each criterion. Let us make this point clear by the 

example of standards N1 and N2. They differ from each other only in the critical values 

of GMcr which for standard N2 is 0.3 m larger than N1. It means that the critical height of 

the centre of gravity KGcr2 of a certain vessel would be smaller than KGcr1 by the same 
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value of 0.3 m. Consequently the average stability reserve 2x  should be larger than 1x .

Therefore, the curve P2 x  will be shifted along the x -axis towards the greater x -values. 

But the x -value remains almost constant. That's why the slope of the curve P2 x  is 

practically equal to the slope of curve P1 x . It is clear that standard N2 provides a greater 

guarantee as a whole than N1. However, it is achieved by more severe requirements for 

all vessels, not only for the vessels with an inherently worse stability. To meet these 

requirements it would be necessary to lower the centre of gravity even for those types of 

vessels, which have successfully operated for many years. Therefore, the seductive 

simplicity of the standards N1 and N2 might be extremely ineffective though the standard 

N2 has the highest guarantee among other considered stability standards. At the same 

time, IMO Recommendations [IMO, 1968], have the least measure of inadequacy x and 

ensure rather a high conventional guarantee . To achieve the same guarantee, which is 

provided by the more complicated Rules of the Russian Register, it would be enough to 

increase the average reserve x  from 6.7% up to 8.9%. 

These considerations and estimations of various suggested stability standards were to 

become the first international stability standard, which is known all over the world as 

IMO Stability Recommendations, [IMO, 1968]. Although these Recommendations have 

not yet become a part of the ratified International Conventions, they are widely applied in 

practice and have even became a component of national stability requirements of many 

countries
*
.

Table 1.1 Reliability Characteristics of Four Different Stability Standards for Fishing Vessels 

Stability standards Measure of 

mean reserve

x %

Measure of 

inadequacy

x %

Measure of 

unreliability 

P x  % 

Conventional

guarantee

%

1. Russian Register of 

Shipping  (1967 draft) 

9.7 6.2 5.6 94.3 

2. IMO Stability 

Recommendations for 

Fishing vessels, 1968

6.7 5.6 11.5 88.5

3. Simplified Standard N1 4.8 8.9 29.5 70.5 

4. Simplified Standard N2 15.8 8.8 3.6 96.4 

1.2 Vectors of Assumed Situations and Loading Conditions. Risk Function 

Considering the general philosophy of stability standardization, we came across a number 

of concepts, which are closely connected with random events and values. They include 

such data as weather conditions at certain moments or time intervals given in advance; 

the rolling characteristics in irregular seas; fluctuation of the height of the vessel's centre 

of gravity and of the draft or displacement, etc. We can state that these events may either 

occur or not occur with some probability. But we cannot predict them in a deterministic 

sense. While analyzing statistical data, we applied the apparatus of mathematical 

                                                          
* As of March, 1993. 
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statistics based on the theory of probability. Comparing different stability standards, their 

criteria and norms, we had to introduce the unified stability measure, which is the relative 

height of the vessel’s centre of gravity. It fluctuates by being influenced by random 

circumstances. So it is a random process. 

Then, a natural question arises: is it possible to consider the whole chain of sequential 

events during the lifetime of a vessel as a flow of random impulses or processes which 

can capsize or not capsize the vessel at some moment of time with some probability? In 

this sense, capsizing itself might be considered as a random event which can be realized 

or not realized under certain conditions. 

The problem of setting stability standards thus formulated has been investigated for more 

than thirty years. But it does not mean that any use of the theory of probability or 

statistics is equivalent to the probabilistic approach in the true sense of the word. For a 

long time many attempts have been made to take into account the irregular rolling 

amplitudes and the gusts of wind by setting such amplitude values or such a value of 

wind velocity in a gust which have a rather small probability of being exceeded.  

Nevertheless, it would not be quite correct to state that the figures and formulae given by 

such standards provide for such rolling amplitude and such wind gust force which cannot 

ever be exceeded. The form of criteria and norms does not differ from the deterministic 

ones. And the guarantee of safety still remains conventional. 

In further analysis we shall use the term "probabilistic approach" only for such an 

approach for setting stability standards where the probability of capsizing itself is used as 

a universal criterion or may be expressed simply and solely through other functions. In 

many cases such a replacement is more convenient. For instance, we can consider a 

random event of non-capsizing instead of an event of capsizing. But these two events are 

opposite in their meanings. Therefore their probabilities are related by the equality: 

1)()( XPXP  (1.20) 

We use here the notations  for capsizing and X  for the opposite event, that is, for non-

capsizing. Therefore: 

)(1)( XPXP  (1.21) 

Later, we shall analyze some other values and functions, which may be expressed by 

)(XP and vice versa.

The main advantages of the probabilistic approach will be considered in comparison with 

the deterministic one. Let us introduce some elementary concepts whilst not aiming to 

apply strict definitions in the beginning. It is intuitively clear that one can talk about more 

or less dangerous situations at any moment of the vessel's life. Stormy conditions are 

usually connected with a more significant risk than conditions of still weather if the 

loading conditions in both situations are the same. Nevertheless, some loading conditions 

can be very unfavorable for stability. Then, the calm sea state in a harbor may be more 

dangerous than stormy conditions at sea for the same vessel, if the stowage of its cargoes 

and stores are especially unfavorable in the port. Hence, it is necessary to define two 

concepts: the situations and the loading conditions which should be taken into account 

while calculating stability (assumed situations and assumed loading conditions). 
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The concept of an assumed situation was partially discussed in subchapter 1.1. It includes 

weather characteristics: wind, sea state, heading of the vessel relative to the wind velocity 

and to the general direction of the waves propagation, speed of the vessel, additional 

forces caused by the specific intended service of the vessel (pull of the towing rope, 

forces caused by fishing gear, reaction of ballasting devices, etc.). Usually, it is possible 

to determine the situation by a set of parameters, such as: 

Mean wind velocity uAm;

Standard deviation of pulsation components of the wind velocity u ; 

Height of significant waves hs;

Mean period of visible waves Tm ;

Speed of the vessel v;

Heading to waves ;

Heading to wind A;

Additional external forces (or resultant vector of such forces eF ).

One may consider any set of many parameters as a multidimensional vector. Therefore 

we shall denote a vector of a certain situation as:  

eAmsuAm FvThuSS ,,,,,,, . (1.22) 

The loading conditions may also be represented as vector L . For the purpose of stability 

estimation it is usually sufficient to take into account the following components of this 

vector: vessel’s displacement W, the height of the centre of gravity KG, and radius of 

gyration around the central longitudinal axis Rx. Then one can write 

),,( xRKGWLL  (1.23) 

For cases when the dynamic stability is to be considered, it is more convenient to use 

another system of arguments, which is fully equivalent to (1.23): 

 ),,( xoyMWLL  (1.24) 

Here, Mxoy is a static moment of displacement relating to the base plane of a vessel: 

KGWM xoy ;  is a natural rolling frequency. 

If we are ready to agree that to evaluate stability it is enough to know two vectors S  and 

L  and in addition to have the vessel's lines drawing and its general arrangement 

drawings, then we can introduce another important concept called "risk function". We 

can measure the degree of risk at any situation and any loading conditions with the help 

of such a function:  

),( LS  (1.25) 

Let us bear in mind that all arguments in these formulas undergo significant alterations: 

weather conditions, heading, speed, loading conditions, etc. In other words, they all are 

functions of time: 

)(;)( tLLtSS
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Consequently the function  itself is: 

)(t  (1.26) 

It is rather a difficult task to write this dependence in an explicit form. So we shall 

discuss the possible methods of calculation of the risk function in other parts of our 

analysis. Now, let us note that, if the vectors )(tS  and )(tL are stationary at some time 

interval, then the risk function (t) at the same interval is a constant number. A stationary 

situation and stationary loading mean that the components of these vectors are also 

expressed by constant numbers including such parameters as statistical characteristics of 

irregular sea, gusty wind, probabilities of various values of displacement, heights of the 

centre of gravity, etc.

Let us suppose that we know function (t) for a vessel of certain type - A - and for the 

other type - B (Fig. 1.3). In addition, we suppose that the maximal and the minimal 

values of these two functions are equal during some large time interval T, that is: 

maxmax

minmin

BA

BA

Fig. 1.3 Estimation of safety level on the basis of risk functions for vessels of type A and type B 

But the run of these functions on the whole is different. One may wonder: which type of 

vessels, A or B, is safer?  

At least three answers may be given to this question depending on what moment or what 

interval of time this question refers to. 

Indeed, it is possible to compare the safety of these vessels: 

At the same time moment t1 ; 

At different time moments t1 and t2 which correspond to conditions maxAA  and 

maxBB  ; 

During the given interval of time T as a whole. 

(t) Amax = Bmax

A
B

Tt1

t

t2 t3

Amin = Bmin
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Let us note that from the viewpoint of existing deterministic stability standards, there is 

no difference between the second and the third answers since both of the variants would 

be considered equally dangerous (and the most dangerous!) during the interval T.

But type A is much more reliable than type B from the viewpoint of people who are 

working or traveling aboard the vessel and from the viewpoint of the ship owner or 

insurance company. One can assert this because the critical state ( max ) lasts only 

during a small part of the time interval T for vessel A while for vessel B it lasts much 

longer. This fact increases the chance of vessel A avoiding capsizing. 

The probabilistic approach to the evaluation of stability is in full agreement with the last 

point of view. One may say that the deterministic approach gives a definite answer to the 

question whether the vessel will capsize or not when being affected by the external forces 

caused by determined vector S  under determined loading conditions L . This answer may 

be an unconditional "Yes" or "No" without any stipulations. 

The probabilistic answer is also "Yes" or "No" but, with two principal stipulations: 

during the given time interval and with a certain probability. 

For a better understanding of the difference between the deterministic and the 

probabilistic approach, it would be useful to think over an example taken from quite a 

different field. Let us imagine some advanced fortifications, which are under fire from 

the enemy at random moments of time. And we can see a soldier standing at the front line 

near a high-ranking general who came from the headquarters to inspect the regiment. The 

risk of being killed during the shooting is the same for the soldier as for the general. But 

an important question arises: who of them has a greater chance to survive until the end of 

the whole war? The answer is clear because such dangerous shooting is a constant or in 

any case a frequent situation for the soldier but, it is only a short episode in the general's 

service.

So, the heart of the matter in the development of a probabilistic approach to setting 

stability standards is the discovery of links between the probability of capsizing and a 

certain time interval given in advance of the capsizing event. 

1.3 The Probability of Survival and Its Interpretation in the Task of Stability 

Estimation 

The simple considerations and concepts given above may be arranged in the strict 

mathematical formulas. In the papers [Sevastianov, 1963, 1970, 1978, 1979] the risk 

function (t) has another definition, which is necessary for our stability investigation. It is 

the probability of capsizing during the time unit adjacent to the moment t. This 

conditional probability should be determined with the assumption that the capsizing has 

not yet occurred until the current moment t. In every infinitely small interval dt only an 

infinitely small probability of capsizing exists and it is proportional to dt :

dttXdP dtt )()(,  (1.27) 

The probability of non-capsizing during the same interval is equal to: 
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dttXdP dtt )(1)(,

In 1963 it was proved that the probability of non-capsizing during any finite interval 

might be expressed by the formula [Sevastianov, 1963]: 

T

T dttP
0

)(exp  (1.28) 

Here the symbol exp[x] means e
x
 . 

The same expression is used in the contemporary general theory of the reliability to 

calculate the probability of the operation of an element without a failure or a system 

during the given time interval. In English scientific literature this function has its own 

impressive personal name, "probability of survival". We shall use this term the following 

discussions.

The functions (t) and )(TP  have a number of properties which will be analyzed. 

1. It is evident from (1.27) that 

dt

XdP
t

dtt ,
 (1.29) 

2. Being a probability, the risk function cannot be negative: 

 0)(t  (1.30) 

Therefore the integral: 

0
0

T

dttF  (1.31) 

And

0F  (1.32) 

Only under the condition 0)(t

3. F  (1.33) 

Under the condition t  if (t) does not become zero from some moment t till 

t .

4. Consequently in this case: 

FeP F

T if0)(  (1.34) 

It means that the probability of survival becomes less and less in the course of time t : 

as T  increases, )(TP decreases.

5. According to (1.28), the absolute value of the power of the exponential is expressed 

by the area between the curve (t) and the axis of the abscissas within the interval 

Tt0 . The same area may be calculated by the formula: 
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TdttF a

T

0

)(  (1.35) 

Where a is an average value of the risk function within the same interval T.

Therefore, this value may be represented graphically by the height of the rectangle 

with the area equal to F :

T

F
a  (1.36) 

This value at the given area F does not depend on the form of the risk function curve 

within the interval T.

6. The probability of survival during the time unit (T=1) is equal to: 

!3!2
1

32

1
aa

a

a

T eP  (1.37) 

There are statistical data and the results of special calculations [Sevastianov, 1970, 

1978] which confirm that in different countries: 

 /year1,10310 34

a  (1.38) 

The above range is for small and medium-sized fishing vessels. For larger modern 

cargo and passenger vessels the value of a is less. Therefore if we choose the time 

unit equal to 1 year, we may state that a is a very small value and that is why 

aTP 11  (1.39) 

Formula (1.39) is accurate up to the error of the second order. Then the probability of 

capsizing per year is equal to 

aTT PP 11 1  (1.40) 

7. But it means that average number of capsized vessels per year will be: 

NN ac  (1.41) 

Where N is a total number of vessels of the same type, which were in operation during 

the given year. But in the majority of marine countries there are given state statistics 

for different kinds of casualties including stability casualties. The main index for each 

kind of casualty is usually an annual frequency of accidents: 

/year1,
N

N
n c

c

Consequently the average value of the risk function is equal to an average annual 

index which is collected and systematized by the maritime administrations and by the 

insurance companies. 

8. The time tc from the launching of a vessel until she capsizes is a typical continuous 

random variable. The probability of such values is governed by the distribution law 

which is expressed by the density of probability f(tc) . 
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In some cases it is more convenient to use the integral form of distribution law which 

is linked with the density of probability f(tc) by the formula: 

ct

ccc )dtf(ttP )(  (1.42) 

Here: t - is a current variable time within the limits of the integral; P(tc) - is a 

probability of the inequality ctt . It means that the random variable will lie within the 

indicated limits. 

The integrand, function f(tc) , may be determined by the first derivative of: 

c

c
c

dt

tdP
tf

)(
 (1.43) 

One of the important properties of the curve f(x) for any variable lies in the fact that 

the first moment of the area under the curve is taken relatively. The origin of co-

ordinates is equal to the average value of a variable. In our case it is the average time 

from the launching of the vessel until its capsizing, that is, the average lifetime of the 

vessel:

0

cccca )dtf(ttt  (1.44) 

9. Let us use these properties to determine the function, f(tc) and the average lifetime, tca.

To do so, it is necessary to understand what is the meaning of the event which we 

bear in mind stating that the first capsizing will happen at some moment tc . This 

event is a composition of two other events. The first of them - ta - is expressed by the 

fact that there was no capsizing event during the time interval tc . The second event is 

the fact of the vessel's capsizing during the infinitely small interval adjacent to the 

moment tc.

The probability of the first event being equal to the known value is (see (1.28)): 

ct

tcf dttPP
0

)(exp  

The probability of the second event is an infinitely small value dPs as this event would 

happen during an infinitely small interval dt. This probability is expressed by formula 

(1.27):

ccdttcs dttdPdP )()(,

According to the well-known probabilities product rule, the probability of composition 

of these two events is: 

dtdttdPPdP
c

c

t

tctdttcstcfdttctc

0

,, )(exp)(,
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But the same elementary probability may be obtained by the formula (1.43): 

Taking into account that it may coincide with any current moment of time, we'll omit 

the subscript "c" and write: 

t

dttttf
0

)(exp)(  (1.45) 

Hence, the average duration of the lifetime of the vessel: 

dtdttttt
t

a

00

)(exp  (1.46) 

This expression may be significantly simplified if it is assumed that the average value 

of  does not alternate under some stationary conditions of operation. Then at)(

and therefore: 

0

dttet
t

aa
a

But the definite integral in this formula is equal to 2/1 a . Readers can verify this 

statement by elementary integration. So finally in this case: 

a

at
1

 (1.47) 

In accordance with these results the distribution laws for the lifetime may be written in 

the following manner: 

 )exp()( ttf aa  (1.48) 

And:

t

atdttftP
0

)exp(1)()(  (1.49) 

Besides:

)exp()( tP aT  (1.50) 

10. Let us imagine the risk function (t) as it is shown in Fig. 1.4. Divide the maximal 

ordinate into n equal intervals and draw lines parallel to the axis t. Then draw 

perpendicular lines upon the axis t from the points M1, M2, M3,..., Mk. Thus, we have 

divided the interval T into k sub-intervals. Each of them has its own duration, i ,

which is to be determined by the corresponding instants of time, kk tttt ,,...,, 110  . Table 

1.2 gives various probabilistic characteristics of the sub-intervals i, the approximate 

ai - values and probabilities )(iP  being among them. 
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Such a procedure makes it possible to calculate the probability )(TP  over the whole 

finite large interval T:

)( 2211)( kakaaePT

Or:

k

i

iaT i
P

1

exp)(  (1.51) 

Evidently, the magnitude of sub-intervals may be assigned by some other or even 

arbitrary manner. In any case, the less the duration’s i are, the less the error of such 

an approximation will be. 

Fig. 1.4 Illustration of an algorithm for determining “probability-of-survival” in accordance with the 

risk function curve 

The average value ai for each sub-interval may be found by various procedures. For 

instance, it may be obtained by the equalization of the areas, which are hatched in fig. 1.4 

or by any appropriate method. 

It is important for further analysis to emphasize that the probability in the formula (1.51) 

does not depend on the permutations of the components in the sum 
k

i
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Table 1.2 Characteristics of sub-intervals 

Sub-intervals 1 2 3 ... k

Duration of sub-intervals 1= t1- t0 2= t2- t1 3= t3- t2 ... k= tk- tk-1

Ordinates at the ends (t0)

(t1)

(t1)

(t2)

(t2)

(t3)

... (tk-1)

(tk)

Mean values a1 a2 a3 ... a4

Probability of survival during the 

sub-interval
P

e a t

1

1 1

( ) P

e a t

2

2 2

( ) P

e a t

3

3 3

( )

...
P

e

k

tak k

( )

1.4 The Problems of Criteria and Norms in the Probabilistic Approach to Stability 

Standards

Let the symbol T signify the time interval given in advance. The quantity )(TP  could 

evidently be suggested as a universal stability criterion. Indeed, the vessels which may be 

characterized by the numerical value of )(TP  significantly below 1)(TP  may 

hardly be recognized sufficiently stable and vice versa, the value )(TP  being very close 

to 1 under the severe weather and loading conditions, might be considered completely 

safe. Moreover, the usage of )(TP  -value as a stability criterion fully removes the 

separate problem of guarantee since this value is at the same time a guarantee itself. 

It should also be noted that it is a real, but not a conventional guarantee since it takes into 

account, in principle, both the real parameters of numerous assumed situations in explicit 

form and the real fluctuations of loading conditions.  

Besides )(TP  some other alternative criteria may be suggested, namely: 

Risk function averaged over all possible situations and loading conditions or, what is 

the same, over the whole lifetime of a vessel; 

The average duration of lifetime of a vessel ta from the launching until the capsizing. 

These alternative kinds of criterion are closely connected with each another: 

aa tTt

T eeP )(  (1.52) 

a

T
a

tT

P 1)(ln
 (1.53) 

)(ln

1

Ta

a
P

T
t  (1.54) 

Thus, these possible criteria may be recognized equivalent. But they are not equally 

convenient because of the different possibilities to assign corresponding norms for each 

of these criteria. 
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Let us start our analysis from the criterion ta. Taking into account the double inequality 

(1.38), we see that for the present time such an average value ta for modern small and 

medium-sized fishing vessels is to be within the bounds:  

 years000,10330 at

For large cargo and passenger vessels, this value may be significantly larger. It is 

absolutely clear that no vessel has a chance to remain in operation during such a 

"theoretically possible" lifetime. And no one naval architect could justify the choice of 

such a stability criterion though the same criterion of reliability is successfully applied to 

other objects with a short lifetime, for instance, to electric light bulbs. Thus, we must 

reject this criterion because of the impracticality of its norm for estimating the vessels' 

stability.

The next alternative criterion )(TP  leads to difficulties of another kind. It might be 

acceptable for evaluation of safety in the cases of less dangerous accidents caused, for 

instance, by collisions or by some failure of the main engine. In such circumstances the 

accident usually lasts for hours. In most cases it is sufficient enough to save the crew and, 

sometimes, the vessel itself. But stability casualties last often for only some dozen 

seconds. Therefore, the safety of the crew can only be ensured against the threat of 

capsizing by a vessel having sufficient stability. That's why it is possible to accept the 

norm of probability of vessel's survival in the situation of collision within the bounds: 

8.06.0 P

But if we are ready to adopt the existing level of safety against the threat of capsizing and 

to keep the statistical values a (see 1.38) then we have to ensure: 

998.0)(942.0 TP

 However, the lower bound is hardly sufficient nowadays. Indeed, such a norm would 

mean that approximately six vessels out of one hundred will, on the average, capsize 

during twenty years of operation. Even the norm 0.99 is not indisputable since the 

probability of survival of each one hundred vessels is only: 

37.099.0)( 100

100TP

Consequently, a sufficiently conservative norm for criterion )(TP  should be between 

0.99 and 1. But the absolutely stable vessel with )(TP =1 is nothing but an unattainable 

theoretical image. Thus, we have a very narrow range to choose a sufficient and 

achievable norm. 

That narrowness gives rise to doubt: is the criterion )(TP  sensitive enough for the usual 

measures of stability improvement? 

Indeed, let us consider the practical question: if the value of 99.0)(TP  is insufficient, 

but the value 1)(TP  is unattainable, then how much ballast should be laid onto the 

vessel's bottom to increase the stability criterion from 0.990 up to 0.991 and to ensure the 

observance of such a stability standard? 



Chapter 1 24 

It is necessary to carry out rather lengthy calculations to give the exhaustive answer to 

this simple question. But it is clear without any calculations that by lowering the centre of 

gravity as much as possible we can increase the existing probability of survival only by a 

very small quantity. Fig. 1.5 clarifies this statement. The abscissa of this graph is the 

relative lowering of the risk function. The initial magnitude of )(TP  is read along the 

second axis. The curve on this graph shows how significant the relative decrement of the 

risk function should be to increase the initial value of probability )(TP  by 0.001.

Fig. 1.5 Sensibility of probability of survival relating to the risk function 

The reader can see that the decrement of a is rather small at 9.0)(TP . But if the 

initial value )(TP is more than 0.95, the required decrease in the a - value becomes 

drastically large.

The same conclusion may be obtained analytically with the help of the first derivative: 

a

TT

a

T PP

d

dP )(ln)()(

This relationship might be considered as a sensitivity measure of the probability )(TP

to the alterations of the risk function a.

Let us write it in a new form: 

a

a
T

T

T d
P

P

dP
)(ln

)(

)(
 (1.55) 

Hence, it is clear that the increment 0)(TdP  under the condition 1)(TP  with 

any alterations of risk function a.

Such a small sensitivity of the above-analyzed criterion in relation to the large sensitivity 

of the risk function (and of the usual stability characteristics) is the main reason to refute 

this criterion.  
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The third type of criterion suggested above is the value that indicates a risk function is 

averaged over the whole of a vessel’s lifetime. 

We have discussed its meaning as an index of annual casualty statistics. This casualty 

index, nca, averaged over a reasonable number of years may be suggested as a norm of 

the criterion a and the main stability requirement may be written as follows: 

k

n
ac

a  (1.56) 

Here: k is a factor of reserve which meets the social need to keep (k = 1) or to increase 

)1(k  the existing level of safety. 

Such a norm seems natural and understandable enough. The acceptance of such a 

criterion and such a norm would make it possible to attain the general goal of 

probabilistic stability standards and to ensure equal safety for different vessels working 

under alternating conditions of weather, loading and intended service. 

But the main obstacle to this criterion is the difficulty in finding the quantity a, taking 

into account the existing (or new if necessary) solutions of the stability tasks in various 

assumed situations. Now, we will begin our discussion of these problems. 

The general idea of such an analysis is as follows. It is necessary to obtain the risk 

function (t) for probabilistic assessment of ship's safety against capsizing. It depends, in 

its turn, on time, since navigation conditions (or a vector of assumed situations S ) and 

loading conditions (or a vector of loading L ) are subject to time. The set of possible 

situations is, strictly speaking, an infinite set as the number of its elements (situations) is 

also infinite. But for practical applications of existing computing systems, it is necessary 

to substitute the infinite set of continuously changing elements by the finite number of 

discrete stationary situations and stationary loading conditions. When this is done the task 

of calculating the risk function may be solved step by step, for each certain situation in 

combination with a certain loading conditions in the beginning and then for the whole set 

of such combinations. 

In the next subchapter we'll try to get such a value of risk function which is an average 

value within some sufficiently large time interval T. The probabilities of all possible 

discrete situations and loading conditions will be taken into account by such an average 

value.

1.5 Algorithm of Averaging of Risk Function 

We have found in previous analysis that any form of probabilistic criteria may be 

determined by the risk function (t). This function depends on the vector of assumed 

situations )(tS  and the vector of loading conditions )(tL , which in their turn are 

dependent on time t (see formula 1.24). The main components of these vectors were 

briefly considered in subchapter 1.2. We shall discuss the properties of these vectors in 

detail below. Here, we suggest an algorithm of averaging risk function taking into 

account all possible situations and all possible loading conditions. 
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From the mathematical point of view (see subchapter 1.3), the risk function is a time 

density of capsizing probability or, equivalently, is a probability of capsizing during the 

time unit adjacent to a time moment t. Function (t) is to be calculated on the assumption 

that for a certain situation S t( )  and a certain loading conditions L t( ) had occurred by the 

moment t. This probability is a conditional one because we suppose that the capsizing 

had not taken place before the moment t . 

Then the infinitely small probability of capsizing during the infinitely small time interval 

dt may be expressed in accordance with (1.27) by the formula: 

dttLtSXdP dtt )(),(,)(,  (1.57) 

Here, symbols in the brackets may be interpreted as the enumeration of the following 

accidental events: 

Event A1 is the occurrence of the situation vector )(tS  by the moment t ; 

Event A2 is the occurrence of the vector of loading conditions )(tL  by the same 

moment t : 

Event XA3  is the event of the vessel capsizing during the time interval dt adjacent 

to the moment t (under the condition that no capsizing had taken place before moment 

t ). 

To shorten further intermediate transformations, we can rewrite formula (1.57) as 

follows: 

dtAAAAAAdP dtt ),,(),,( 321321,  . (1.58) 

For our further analysis, let us recall two important rules of probability theory. The first is 

the product rule, which concerns the probability of coincidence of several accidental 

events.

),,,(),()()(

),,,,(

121213121

321,

nn

ndtt

AAAAPAAAPAAPAP

AAAAdP
 (1.59) 

Symbol P(A1, A2, ..., An) denotes the probability of simultaneous occurrences of all these 

events A1, A2, ..., An, that is their coincidence; 

P(A1) is an unconditional (absolute) probability of event A1 ; 

P(A2|A1) is a conditional probability of event A2 which should be found assuming that 

event A1 has taken place; 

P(A3| A2, A1) is a conditional probability of event A3 which should be found assuming that 

the coincidence of events A1 and A2 have taken place; 

P(An| A1, A2, ..., An-1) is a conditional probability of event An which should be found 

assuming that the coincidence of all events A1, A2, ..., An-1 have taken place. 

The order the events are numbered in formula (1.59) is of no significance. 
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The second rule (addition theorem) is to be applied if we face several incompatible 

(alternative) outcomes of a stochastic test. Let us imagine that k of different incompatible 

results R1 or R2 or ... Ri or ... Rk may appear in some test. We may consider each of these 

results as an accidental event which has its own probability P(R1), P(R2) ... P(Rk) . 

The question arises: what is the probability that one of a certain smaller set of the 

possible incompatible results will appear as an outcome of the test, for example: 

The set of events "Rg or Rj or Rh" we'll call a sum of events hjg RRR .

Then the rule of probability addition should be applied. It gives: 

hjghjg RPRPRPRRR

Or in a brief form: 

)( ii RPRP  (1.60) 

Where i= g, j, h.

Hence, for the sum of all the possible outcomes ("full group of incompatible events" from 

i = 1 to i = k):

k

i

iRP
1

1)(  (1.61) 

The important consequence of these two rules is expressed by the composite probability 

formula. Let us calculate the probability of some event A which can occur only together 

with one of the set of incompatible events H1, H2 ,..., Hg. The composite probability 

formula may be written as follows: 

g

i

ii HAPHPAP
1

)()()(  (1.62) 

Let us use formulae (1.59), (1.60) and (1.62) to transform the equality (1.57) into a more 

convenient form. First of all, let us note that the set of possible situations and the 

analogous set of possible loading conditions are, generally speaking, infinite and 

uncountable sets. It involves some difficulties in analyzing and computing. To avoid 

them, it is expedient to substitute these sets by the finite and countable sets of discrete 

situations Si (i = 1, 2, 3,.., n) and discrete loading conditions Lj(j = 1, 2, 3,..., m). In other 

words we shall represent the whole set of possible assumed situations as an enumeration 

of n different quasi-stationary situations. The same approach may be used for a set of 

loading conditions. Besides, it should be noted that each discrete situation Si has its own 

probability of existence at any time moment chosen at random. This probability may be 

averaged over the large interval of time T:

T

T
SP i

i )(  (1.63) 

Here, T is a sufficiently large time interval approximately equal to, for example, with the 

vessels life time; Ti is an average total duration of situation Si taken over the time interval 

T.
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The analogous statement may be expressed in relation to any discrete loading conditions 

Lj with its probability: 

T

T
LP

j

j )(  (1.64) 

Let us choose some combinations of discrete situation Si and discrete loading conditions 

Lj. Now we have the right to formulate the task: to express the probability of capsizing in 

situation Si under loading conditions Lj during the infinitely small time interval dt.

Apparently, it should be in accordance with (1.57) and (1.59): 

dtLSSLPSPdtLSdP jiijijijidt ),()()(,,,,

But we can write a similar expression for any combination of a certain assumed situations 

of any index i ( i = 1, 2, ..., n) and a certain loading conditions with any index j ( j = 1, 

2,..., n ). Then the composite probability of capsizing during any time element dt within 

the interval T may be represented by the double sum: 

dtLSSLPSPdPdP ji

m

j

ij

n

i

i

n

i

m

j

jidtdt ),()()(
111 1

,,

Dividing the left and the right parts of this equality by dt and remembering that 

adt dtdP /  we get:  

),()()(
11

ji

m

j

ij

n

i

ia LSSLPSP  (1.65) 

Let us try to interpret this equality. The expression standing under the symbol 
m

j 1

 is a 

conditional risk function calculated for capsizing in the situation Sj under loading 

conditions Lj and multiplied by the conditional probability of the event Lj|Sj. After the 

operation of addition, such a sum represents the risk function value averaged over the 

whole set of possible loading conditions in the given situation Sj:

),()()(
1

ji

m

j

ijia LSSLPSX  (1.66) 

Then, the same procedure should be used for all the remaining situations. For this 

purpose, each value )( ia SX  should be multiplied by the probability of the 

corresponding situation. Summing up such products (from i =1 to i = n ) we get the risk 

function averaged over the whole set of loading conditions and over the whole set of the 

assumed situations. Formula (1.65) expresses the main result of this subchapter of our 

analysis. 

Determining the a - value in accordance with this formula provides the possibility of 

calculations of any probabilistic criteria considered in subchapter 1.4 and by Sevastianov 

[1982, 1982a]. 
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To use this method in practice it is necessary to list all the possible discrete loading 

conditions. The word - all - means here " all in accordance with replacement of the real 

infinite uncountable sets of situations and loading conditions by some conventional set of 

discrete situations and loadings ". It is neither an easy nor a simple task. But tasks of this 

nature are very common in practice. The habitual characteristics of wind force (wind 

velocity or wind pressure and so on) are continuous variables, but we often replace them 

by a scale of discrete numbers and say, for example, "wind force 6 of the Beaufort scale". 

One can also say about waves: "sea state 8" or " sea of force 5". For many practical needs 

such discrete characteristics are quite sufficient. 

Only in some rare and special cases do we use continuous scales and say: " a day before 

the casualty the master had been informed that significant waves of 5.47 meters at a mean 

wind velocity of 22.2 m/s were forecast ". 

Therefore, the problem of discrete sets of situations or loading conditions is a rather 

practical than a principal one. One may even expect that in some time standard, sets of 

these vectors might be suggested in a form of discrete scales. 

But the most complicated problem for using formula (1.65) is the problem of stability of 

a vessel under the fixed loading conditions in various assumed situations. Purely 

probabilistic aspects of setting stability standards are fully embraced by the formula 

(1.65), which combines the contemporary theory of reliability with the classical hydro-

mechanical approach to the stability problems. 

Thus, it is necessary to obtain all the solutions for calculating the risk function. 

It is necessary to emphasize that the appearance of new hydromechanical solutions will 

require just a simple replacement of figures in formula (1.65) by other figures, which are 

more relevant to the mechanics of capsizing. 
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Chapter 2 

Probabilistic Evaluation of Environmental and Loading 

Conditions

2.1 Lightweight Loading Conditions 

Two vectors were mentioned in subchapter 1.2: the vector of loading conditions and the 

vector of assumed situations. We start with the vector of loading conditions including 

displacement W, the height of the centre of gravity KG, and radius of gyration around the 

central longitudinal axis Rx; we have introduced it as:  

),,( xRKGWLL

All the components of the vector are changing during the voyage of the vessel as well as 

her whole lifetime. For example, changes in the displacement of a trawler during one 

voyage can be taken: see fig 2.1, [Rakov and Sevastianov, 1981]. 

Fig. 2.1 Change of displacement during the voyage of a large fishing vessel 

Legend Stages of the voyage 

I        loading in the port (0 - 1) 

II       heading to fishing ground(1 - 2) 

III      fishing (2 - 3) 

IV      heading back (3 - 4) 

V       unloading in the port (4 - 5)
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Möckel [1960] presented stability as a function of time: GM(t). Rakov considered two 

components: GM(t) and W(t) as functions of time. Sevastianov [1970] proposed 

probabilistic interpretation of these figures. Moisseyeva [1971] gathered and processed 

statistical data on changes of loading conditions during the voyage of a large Russian 

trawler, "Mayakovsky". 

Vector presentation of loading condition was proposed by Pavlenko [1949] and 

developed by Moisseyeva [1976].

The components of the loading condition vector are not independent. There is a 

correlation between the displacement, KG and mass distribution. The degree of this 

correlation is different for different vessels and depends on peculiarities of service. 

Vector presentation of loading makes it possible to take into account such a relationship. 

So we shall consider loading as a vector, OM , in co-ordinate space O, W, KG, Rx.End 

point M of the vector OM  is moving in 

space during the ship’s lifetime; see fig. 

2.2 [Rakov and Sevastianov, 1981]. 

Application of the scheme of 

probabilistic stability assessment 

described below in subchapter 2.2 

requires knowledge of probabilistic 

characteristics of loading conditions and 

their dependence on time. 

First, let’s consider the structure of 

components of the vector. Displacement 

as a measure of the weight of the vessel 

is conventionally described as a sum of 

three terms: 

PDWW w0  (2.1) 

Where: W0- lightweight displacement; D w - deadweight; P - special load (icing, loading 

caused by green water shipping, etc.) These weights can also act as external forces on the 

ship. Values for KG and Rx also can be presented in such a form in the same manner. 

Let’s start from lightweight loading conditions. Experience of long-term operation of 

vessels showed that after 8 -10 years, stability was considerably changed in the same 

state of loading [Sevastianov, 1970]. First of all, the lightweight changing was caused by 

ageing.

It is known that corrosion of a ship’s shell plating below the waterline can reach up to 

0.1-0.2 mm per year. For example, a medium size trawler might lose about 5 metric tons 

of weight over 10 years: the underwater area of such ship is about 300 m2. This would 

increase KG up to 3-4 cm [Sevastianov, 1970]. More details and practical formulae are 

available from [Guralnik and Kulagin, 1995]. 

Fig. 2.2 Vector presentation of loading 

condition. W0 - light displacement; WMax - 

maximum displacement 

M(t=0)

M

M(t)

Rx

KG

WmaxW0

W
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Another reason is moisture in wooden deck planking and other wooden details. The 

moisture content of air-dried wood, which is normally used in shipbuilding, is about 18 - 

20%. After the first several years of service, this quantity increases up to 30 - 40% and 

then becomes stable. Such an increase means an additional 1-2 tons of lightweight 

displacement and about 1 cm of KG for a vessel such as a medium trawler [Sevastianov, 

1970].

An even more significant increase can be caused by a rise of moisture content of internal 

insulation. For example, such an increase in light displacement reached up to 10 metric 

tons for the Russian medium size trawler "Bologoe". The change in KG depends on the 

location of such spaces in the ship [Sevastianov, 1970]. 

Repairing, service between 

voyages and modernization 

are also important factors. 

Installation of additional 

equipment and strengthening 

of damaged structures during 

repairs also alters lightweight. 

So, lightweight loading 

conditions are subject to 

change due to all the above 

mentioned factors. This 

change can lead to a non-

compliance of stability and 

free board standards that can 

be illustrated in a form of an 

ellipse of probability of 

loading condition vector L
shown in fig. 2.3.

2.2 Time Varying Components of Loading Conditions 

Consider records of displacement, KG and R
x
, made on a daily basis for several voyages 

of a ship. These records can be considered as stochastic processes with the exception for 

a few cases when the vessel services the same route and has exactly the same amount of 

cargo all the time (even though a certain randomness is introduced by weather). 

Stochastic character of loading conditions is especially strong for fishing vessels. It 

depends on the quantity of fish in a certain region, organization of fishing, frequency of 

catching cycle, etc.  

Generally, the trajectory of vector end M (see fig. 2.2) has to be considered as a particular 

realization of the stochastic process of loading conditions. The probability of a certain 

loading conditions appearing in a certain moment can be completely defined by the 4-D 

probability distribution of stochastic vector OM . If we know time history of 
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Fig 2.3 Changing of ellipse of probability of loading 

condition vector due to ageing [Guralnik and Kulagin 

1995] 
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displacement, KG and Rx such a distribution can be easily determined as the following 

limit: 

X

lijk

R
KG
W
t RKGWt

p
OMf

X

lim

0
0

0
0

)(  (2.2) 

Where: plijk  -frequency of getting the vector end point in a 4D elementary parallelepiped 

with size tl, Wi , KGj, RXk with co-ordinates tl, Wi, KGl and RXk

The practical algorithm of calculating the distribution, having data on loading conditions 

varying with time, is described in detail in [Moisseyeva, 1976]. It is shown that it is not 

necessary to use time as an independent co-ordinate here - a dangerous situation can 

appear at any moment of time. The algorithm, in general, is based on the same principles 

as an ordinary histogram calculation: all the axes should be subdivided into elementary 

ranges. The frequency of hitting the elementary parallelepiped by the end point of the 3D 

stochastic vector of the loading condition yields the required value of the estimate 

probability density.  

The practical realization of this approach requires detailed knowledge of the time history 

of loading conditions during a significant number of voyages. Meylunas and 

Braslavskaya [1976] developed such a statistics-based method for a 2D loading condition 

vector for cargo vessels. Consider a cargo vessel, which heads from one port to another, 

having a random quantity of cargo of a random kind and some quantity of fuel and food 

stores. We characterize the quantity of cargo by special value , which is the weight 

cargo coefficient:

Fc

c

P
P

Were Pc is the current amount of cargo, PFc is full cargo capacity. The value  should be 

considered as a random number because the type of cargo is arbitrary. 

We assume, when the ship has less than 10% of fuel and food stores ("storm reserve"), 

she should refill her stores up to full capacity. It is convenient to use a special value  for 

characterizing the quantity of stores. It randomly changes from 0 (only 10% of stores - 

storm reserve) up to 1 (full stores). So, the current quantity of stores and its moment can 

be expressed as:

0

StSt PP  (2.3) 

0

ZStZSt MM  (2.4) 

Where PSt

0  and MZSt

0  are weight and static moment at 90% ship stores. 

Full displacement and moment at any moment of the voyage can be expressed as: 

0

0)( StFc PPWtW  (2.5) 

0

00)( ZStcFcZ MzPKGWtM  (2.6) 
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Where: W0 and KG0 correspond to unloaded ship with 10% of stores on board; zc is 

elevation of centre of gravity of the cargo. 

Good seamanship practice requires filling of a hold by a cargo, so zc will be defined only 

by the volume of cargo. Assuming the sides of a ship are vertical, we can write: 

Fc

c
dbFcdbc hzhz )(  (2.7) 

Where: hdb is double bottom height or the height of the lowest filling level of cargo in the 

hold; zFc is elevation of centre of gravity at full cargo capacity. Fc is full volume 

coefficient (the volume of full cargo capacity per one metric ton of displacement). c is 

current volume coefficient (the volume of one metric ton of currently loaded cargo): it is 

a random variable, because the kind of cargo is arbitrary. 

Random variable  is assumed to be independent of the other two values. It means that 

the relation between routing and type of cargo is not taken into account. This assumption 

leads to the introduction of the constant distribution of , because the ship can be at any 

stage of her route with the same probability: 

]1;0[;1

]1;0[;0
)(

if

if
f  (2.8) 

Two other random variables  and c are related as follows: 

1
Fc

c  (2.9) 

Probability distributions of  and  are considerably different depending on type of 

cargo: general or mass [Meylunas, 1971]. We consider the transporting of these two 

different kinds of cargo as two forms of the shipping operations. 

For transporting a mass cargo, the loading coefficient, , is about unity, so weight 

capacity is fully used. When transporting a general cargo, the volume capacity 

coefficient, c, is about unity, so volume capacity is fully used. 

Let's start from the first case: using full weight capacity while transporting mass cargo. 

We have =1, values  and c keep their random character. The purpose is to obtain the 

joint distribution of displacement and KG, which can be expressed as: 

 )|()(),( WKGfWfKGWf  (2.10) 

The distribution of displacement is uniform, taking into account (2.5) and (2.8): 

];[1

];[0

)( 0
0

0

St
St

St

PWWWif
P

PWWWif
Wf  (2.11) 

To obtain the joint distribution density f(KG|W), we exclude random variable  from 

(2.6) and consider displacement as a parameter:  
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Fc

St

ZSt

Fc

c
dbFcFcdbFc PWW

P

M
hzPhPKGW

W
KG 000 )(

1
 (2.12) 

Equation (2.12) is a linear function of the random variable  if W is given. Taking f( c)
from fig. 2.4, we obtain conditional distribution f(KG|W).

Equation (15.12) allows derivation of conditional distribution density of KG if the 

displacement is given, which completes consideration of the mass cargo case: 

 |)(|)()|( cc KGfWKGf  (2.13) 

Figure 2.4 Probability density of current volume coefficient for transporting of mass cargo 

[Meylunas, 1971] 

The example of joint distribution is given in fig. 2.5 for a cargo vessel with 

characteristics, which are given in the table below: 

Fig. 2.5 Example of joint distribution density of KG and displacement for ship transporting mass 

cargo [Meylunas and Braslavskaya, 1976] 
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Length: 120.5 m Breadth: 2.8 m Depth: 9.5m 

hdb  = 1.1 m W0  = 3625 MT KG0 = 7.3 m 

PFc = 5895 MT zFc =5.95 m Fc = 1.5 m3/MT
0

StP  =730 MT 0

ZStM = 928 MT m 

Let's consider the second case, when full volume capacity is used (general cargo). The 

weight capacity of a ship is not fully used: 

1

We have two random variables  and . Distribution of the stores coefficient is 

evidently the same, as in the previous case. Uniform distribution density is proposed for 

cargo coefficient [Meylunas and Braslavskaya, 1976]. 

]1;[;
1

1

]1;[;0

)(
min

min

min

if

if

f  (2.14) 

Where min is the minimum value of the cargo weight coefficient, which is evaluated 

from statistics. It depends on the full volume capacity coefficient, Fc.

It is convenient to express the value of min through M mean value of , which can 

be determined from the graph in fig. 2.6. 

Fig. 2.6 Value of weight coefficient vs. full volume capacity coefficient 

Displacement is considered as a deterministic function of two random arguments  and 

as in equation (2.5). Random variables  and  are independent, their distributions are 

known, so distribution of the displacement can be found. Meylunas and Braslavskaya 

[1976] presented it in trapezoidal form, see fig. 2.7. 
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Coordinates of the points A, B, C, and K as

well as the height of trapezoid figure a can 

be calculated as: 

For the case: ccst PPP min

st

cstK

cstC

cB

cA

P
a

PPWW

PPWW

PWW

PWW

1

0

min0

0

min0

 (2.15) 

For the case: ccst PPP min

)]1([
1

min

0

0

min0

min0

c

cstK

cC

cstB

cA

P
a

PPWW

PWW

PPWW

PWW

 (2.16) 

For deriving a joint distribution, it is sufficient to obtain conditional distribution of KG,

when the displacement is given, see equation (2.10). For this purpose we exclude  from 

equation (2.6): 

)(
1

),( 00 c

st

st
cc PWW

P

m
zPKGW

W
givenWKG  (2.17) 

The equation (2.17) is a linear function of , consequently the conditional distribution 

density can be expressed as: 

dKG

givenWKGd
WfWKGf

)],([
)|()|(  (2.18) 

Where: f( |W) is the distribution density of random variable , when the displacement is 

given. It is of uniform distribution. A range of changes in random variable , when the 

displacement is given can be obtained from equation (2.18) where other random variables 

change from 0 to 1. 

max

0

min

0 )(
cc

St

P

WW
givenW

P

PWW
 (2.19) 

So, the distribution is: 

f(W) 

BA C K

W

a

Fig. 2.7 Probability density function of 

displacement for ship using full volume capacity
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PWW
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WW
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givenWif
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00

00

;)(;

;)(;0

)|(  (2.20) 

The derivative of (KG, W - given), which is an inverse function to equation (2.17) can 

be written as follows: 

st

st
ccc P

m
PzP

W

dKG

givenWKGd )],([
 (2.21) 

A range of change in random variable KG, when the displacement is given can be 

obtained by substitution of equation (2.17) into equation (2.19): 

max

000

min

000 )()( stcstcst PWWzmKGWWKGWWzmKGW  (2.22) 

Finally: 

W
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The example of the joint distribution for the above mentioned cargo vessel is given in fig. 

2.8.

Fig. 2.8 Example of joint distribution density of KG and displacement for ship transporting general 

cargo [Meylunas and Braslavskaya, 1976] 
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Such a general solution can only be applied for cargo vessels. Operation of a fishing 

vessel involves more random values. First of all, a fishing vessel has two basic regimes of 

operation: heading (to/from fishing ground) and fishing itself. 

The fishing regime is more complicated. It can be a sequence of lifting of stochastic 

weight catches, where time between two neighborhood catches is also random. 

Moisseyeva [1976] calculated the distribution of loading condition vector L L GM( , )

for the large Russian trawler "Mayakovsky". Apollinariev and Sevastianov [1992] 

obtained the distribution of loading conditions through simulation of a complete fishing 

operation. The catch was presented as a stochastic flow of singular events associated with 

random weight of the caught fish; intervals between catches were also random numbers. 

Detail simulation of fish processing aboard the ship allowed precise prediction of 

distribution of displacement and KG. Characteristics of input catches flow were based on 

existing fishing statistics. 

2.3 Meteorological Components of Assumed Situation
1

We introduced a concept of a vector of an assumed situation in subchapter 1.2 and 

indicated its possible components. These components are dependent on time, so the 

vector S  has to be considered as a multidimensional stochastic process [Sevastianov, 

1982b; Mordachev, et al 1994; Mordachev, 1995]. 

It is convenient to separate the components of the vector of assumed situation S  in two 

auxiliary sub-vectors:

 ),( 21 SSSS  (2.23) 

Where S1  is a sub-vector describing waves and wind and S2  is a sub-vector describing 

ship heading and additional forces. The first sub-vector characterizes environmental 

weather conditions, the second one contains operational information, which is also 

dependent upon human decision making: 

,...),,,,,(

,...),,,,,(

22

11

pypxA

wuwsuuAm

PvSS

ThuSS
 (2.24) 

With: 

uAm - mean wind velocity 

u- standard deviation of fluctuating part of wind velocity 

u- angle between wind direction and geographical North 

hs- height of significant waves 

Tm- mean period of waves 

uw- angle between general directions of wind and waves 

v - ship heading speed 

A- angle between ship heading and general wind direction

                                                          
1 Written in co-authorship with Prof. Alexander B. Degtyarev and Dr. Alexander V. Boukhanovsky of 

Institute for High Performance Computing and Information Systems (Russia). 
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- rudder angle 

P - module of principal vector of additional external forces, related with ship 

service

px, py- angles between P and ship co-ordinate axis Kxyz

There are dots in formulae (2.24); they mean that they are not closed for addition of 

possible new components, if they are significant for stability evaluation. For example, it 

may be necessary, to include geometric characteristics of the ship’s hull, angular velocity 

of ship turns or radius of curvature of her trajectory in sub-vector S2  as components. It 

could be useful to include width of wave spectrum in sub-vector S1  and principal 

external heeling moment in sub-vector S2 . However, every new component will make 

analysis more complicated. We are interested in reducing components, the influence of 

which on the stability evaluation are not so important. 

A close look at the components reveals that there is one main argument or component in 

each of the sub-vectors, a small value of which reduces the importance of all sub-vectors. 

For example, when 0Amu , then it is impossible to meet a significant fluctuation of 

wind velocity so 0u . Therefore, a prolonged period of severe irregular waves is also 

impossible, so all the components of sub-vector S2  loose their significance. 

The importance of reducing the number of components can be illustrated by the 

following example. If it will be assumed that all components of vector S  are independent 

and it is enough to have k values on each component, then the total number of assumed 

situations would be as follows: 

ns

ss kN

So, if total number of components in equation (15.24) is ns=12 and ks=5, we get: 

812 1044.25sN

The vector of loading condition has 3 components and each component is presented, say, 

by 5 values. The total number of the loading condition cases, which should be taken into 

account in each assumed situation, will be determined as follows: 

 12553

lN

The total number of risk function computations in all assumed situations with Nl discrete 

loading conditions is: 

101005.3ls NNN

The number of necessary cases makes calculations quite bulky and leaves small hope for 

use of this method as an everyday tool.  

However, this number can be significantly reduced by taking into account dependence of 

arguments. Such dependence of arguments of the sub-vector S1  (waves and wind) can be 

found by analyzing meteorological statistical data. Components of the sub-vector 2S

(ship heading and additional forces) are dependent on human decision makings and 
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circumstances of the vessel’s operation. Introducing some models of operator strategies 

can reveal their interdependency. This subject is considered in the next subchapter. 

Further, we consider meteorological components of the assumed situation vector in order 

to find their interdependence in a form, which can be of use to simplify the problem. 

Meteorological data today is the result of long term observations averaged and 

represented by tables of a special type for a certain season and geographical region. 

These kind of data can be found in “Global Wave Statistics”, published by British 

Maritime Technology Limited (BMT) [Hogben, et al 1967, 1986] (see also chapter 9 of 

[Kobylinski and Kastner, 2003]). Another source is "Wind and Waves in Seas and 

Oceans" [Davidan, et al 1974] issued by the Russian Register. These sources divide all 

world oceans and seas into geographical regions. The data also are divided by seasons. 

Examples of such tables are given in table 2.1.  

Table 2.1 Wind velocity probability by direction, % 

Season Wind 

velocity

m/s

Direction

  N NE E SE S SW W NW 

1 region of Baltic sea 

Winter <6 3 2 2 2 3 3 4 3 

 6-12 4 4 5 4 6 10 10 6 

 12-16 2 2 2 2 2 5 4 2 

 >16 1 <0.5 <0.5 <0.5 1 2 2 1 

Spring <6 6 8 7 5 5 8 6 6 

 6-12 4 8 7 3 4 7 6 3 

 12-16 1 1 1 <0.5 <0.5 1 1 1 

 >16 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

Summer <6 6 6 5 4 6 10 9 3 

 6-12 4 5 5 4 6 9 10 3 

 12-16 <0.5 <0.5 <0.5 <0.5 <0.5 2 1 1 

 >16 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

Autumn <6 5 2 3 3 3 4 4 3 

 6-12 4 3 5 7 7 11 11 6 

 12-16 1 1 1 2 2 3 3 2 

 >16 <0.5 <0.5 <0.5 <0.5 <0.5 1 1 1 

These tables contain data on statistical frequency of meeting certain characteristics of 

wave height, mean wave period, mean wind velocity and wind direction. Data of 

correlation of these random variables can be found for several regions. 

A very clear relationship exists between mean value of wind velocity, u, and standard 

deviation of the fluctuating part of wind velocity, u. In accordance with measurements 

variance of instant relative wind velocity Amutuu /)(  is equal [Lugovsky, 1976]: 

seaCaspian0167.0uV

Antarctic0206.0uV
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For the first expansion estimate, this data can be generalized: the first case for all closed 

seas, and the second one for open seas and oceans. 

Standard deviation u can be expressed as follows in this case: 

uAmu Vu  (2.25)  

The next is the relationship between mean value of wind velocity and statistical 

characteristics of wave height. NATO data sheet for the Open North Atlantic might be 

used as a sample of such data [Buckley, 1992]. 

Table 2.2 Significant wave height and sustained wind speed for North Atlantic [Buckley, 1992] 

Sea

State

Significant Wave 

Height (m) 

Sustained Wind 

Speed (kn) 

Percent-

age Pro-

bability 

of Sea 

State

Modal Wave Period 

Number Range Mean Range Mean  Range Most 

Portable

0-1 0-0.1 0.05 0-6 3 0.7 - - 

2 0.1-0.5 0.3 7-10 8.5 6.8 3.3-12.8 7.5 

3 0.5-1.25 0.88 11-16 13.5 23.7 5.0-14.8 7.5 

4 1.25-2.5 1.88 17-21 19 27.8 6.1-15.2 8.8 

5 2.5-4 3.25 22-27 24.5 20.64 8.3-15.5 9.7 

6 4-6 5 28-47 37.5 13.15 9.8-2.2 12.4 

7 6-9 7.5 48-55 51.5 6.05 11.8-18.5 15.0 

8 9-14 11.5 56-63 59.5 1.11 14.2-18.6 2.4 

>8 >14 >14 >63 >63 0.05 18.0-23.7 20.0 

There are data available on the 

relationship between wave 

height and mean wave period. 

An example of this relationship 

is given in fig. 2.9. This chart 

was used as an industry standard 

in Russia for calculating ship 

motions [Boroday and 

Netsvetaev, 1969, 1982; 

Boroday, et al 1989]. The upper 

curve corresponds to maximum 

observed mean periods and can 

be considered as values of mean 

periods of dying waves. The 

lower curve corresponds to minimum observed mean periods of growing waves. The 

middle curve can be considered as values of mean periods of fully developed waves. It 

can be approximated by the following formula [Davidan, et al 1974]: 

2 4 6 8 10 12 14 16 18
0

5

10

15

h3%, m 

Tm, s 

Decreasing waves 
Developed waves 

Increasing waves 

0

Fig. 2.9 Mean period of irregular waves vs. h3% wave 

height with 3% probability of exceeding 
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%33.3 hTm  (2.26) 

This formula contains wave height with 3% of probability of exceeding (h3%), which is 

used along significant wave height (mainly in Russian literature):

ss hhhh 75.0;33.1 %3%3

The last parameter, uw is the angle between wind and general direction of waves. This 

angle may be different from zero. A possible reason for this phenomenon is the influence 

in neighboring regions, the waves generated there may reach quite far away in a form of a 

swell. If swells are likely in the region, they are usually included into wave statistics. 

Finally, if the ship route is known, statistical relationships between components of the 

“weather” sub-vector might reduce the problem to one random variable, defined by the 

region. (Such an assumption is definitely acceptable for the first expansion of the risk 

analysis). The voyage can be considered as a flow of events associated with a random 

number describing the weather in the region – usually, significant wave height. 

The central problem is how to relate wave statistics with the ship motions: averaged 

characteristics of waves (including spectrum) do change in time. Therefore, we have to 

work in a “synoptic” time scale and we cannot assume that significant wave height stays 

the same. Completely different models are needed for such analysis. These models can be 

developed by averaging weather states for longer times. It is assumed that a state of 

weather can be fully defined by a 3D spectrum (taking into account frequency and 

direction at the same time).  

There are two types of waves at sea: wind waves and swell (one or several systems). In 

fact, they are distinct physical phenomena: mechanics of their generation is different. 

Each of these systems has its own statistical measures: wave height h, direction  and 

period T. For example, significant wave height is a statistical measure of wave height, 

mean period of wave is a statistical measure of wave period, etc.

Since we deal with a synoptic time scale, the spectrum is no longer constant: in fact, it is 

a stochastic function. However, it is difficult to use spectral density for statistical analysis 

[Jonson and Wichern, 1992]. A reasonable alternative is to consider it as a deterministic 

function of random numbers. We assume wave height h, direction  period T, and 

characteristics of wave generation (free run X, duration Tw, water depth Hw, etc.) as a set 

of random numbers. It depends on geographical co-ordinates (x, y) and time t:

,...,,,,,),,( WWRN HTXThtyxS

Each value of SRN(x,y,t) is mapped to spectral density: 

 ),,(),( RNSSS

To build such a model we have to resolve the following problems: 

Find a set of parameters (parameterization) to map the presentation of the spectrum as 

a stochastic function onto presentation of spectrum as a deterministic function of 

random arguments. 

Classification of spectra in the characteristics of SRN.
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Find areas of stability in space and time states of the spectrum. 

Parameterization means that we find some typical representatives of every class of 

spectra. Then the spectra would differ inside the class only by numerical values of the 

parameters. Such a representative spectrum could be considered as a certain characteristic 

of the wave climate: (see also subchapter 9.12 of the [Kobylinski and Kastner, 2003]). 

The term “spectral wave climate” was introduced in the conclusion of the International 

conference “Provision and Engineering/Operational Application of Ocean Wave Spectra” 

in 1998.

The first attempt of classification of wave spectra was made by Buckley [1988]. He 

analyzed more than 2 million of spectra that were generated over 12 years at 13 buoys 

located in coastal waters of the USA. All the wave situations that the study included were 

broken down into twelve types, according to their significant wave height. Then all 

spectra in each class were averaged by each frequency. However, wind waves of the 

same height could result from various weather conditions (rising sea, decaying wind 

waves, swell, etc.). They are characterized by different spectra. 

A classification of spectra Si( , hs) based on a single parameter, hs or variance V , would 

lead to difficulties of interpretation. A more fruitful approach, which also leads to a better 

understanding of the results, is 

based on classification with 

respect of “persistent 

conditions”. For example, 

Lopatoukhin, et al. [1990] for 

the tropical Pacific, proposed 

four types of wave generating 

conditions leading to the 

development of common 

features in their spectra (see 

table 2.3). Variability of wind 

wave spectra within each of the 

four groups can be expressed 

using quantile (or probability of 

exceeding a given level) 

diagrams as shown in fig. 2.10.

Another classification also not 

based on formal partitioning of 

wave height and other statistical 

characteristics was mentioned in subchapter 9.12 of [Kobylinski and Kastner, 2003]; it is 

descried completely in [Lopatoukhin, et al, 1999; Boukhanovsky, et al., 2000]. 

Functional representation of such classes of spectral densities S( ) can be made using the 

following well known approximation: 

nk BAS exp)(  (2.27) 

Where A, B, k, n are parameters reflecting wave generating conditions. 
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Fig. 2.10 A typical wave spectrum generated under the 

action of strong trade winds in the tropical part of the 

North Pacific Ocean 
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Table 2.3 Typical frequency spectra for the tropical part of North Pacific Ocean 

Type % Wind,  

m/s  

Variance,

cm
2

Peak No.1, 

 Rad/s

Peak No.2, 

Rad/s

Spectral shape 

S( ),  (m
2
 s)

ITCZ 40 <6 650-1300 0.4-0.7 0.8–1.1 0.15

1.8

MTW 25 <8 1500-2800 0.4-0.7 0.8–1.1 0.6

2.0

STW 25 8-15 2500-4500 0.4-0.7 0.7–1.0 1.0

2.0

TC 10 >15 >4500 0.4–0.7 

2

2

Note: ITCZ is Inter-Tropical Convergence Zone, MTW is moderate Trade Winds, STW is strong 

Trade Winds, TC is tropical cyclone. 

Mean wave height, h , is the only parameter needed for description of wind sea waves. 

Mean wave period can be estimated by various relations (see above or [Davidan, et al, 

1974]). Single-peaked spectral approximation (2.27) for swell depends on two 

parameters, namely h  and Tm. The ratio hgTm /2  reflects non-dimensional steepness. 

A complex wave can be expressed, in the first approximation, as the sum of spectra: 

 )()()( SwellWindComplex SSS  (2.28) 

The proposed approximation uses spectral moments and some other related variables. It 

makes possible to represent any spectral density function S( ) as S( , SRN). All 

operations with such functions S( ) inside their class are ones with deterministic 
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functions of random arguments SRN. For example, it is possible to define the mean 

spectrum: 

RNSSS ,  (2.29) 

The quantile (the value with given probability of exceeding certain level p) spectrum: 

pRNp SSS ,  (2.30) 

Here RNS  is a mean value of the set of random numbers and 
pRNS  is its p-quantile (the 

value with given probability of exceeding certain level). 

The above examples dealt with frequency wave spectra only. However, direction of 

propagation of different wave systems is also important. A 3-D pattern of wave spectrum 

is particularly complicated for 

moderate wave heights. In the case of 

a strong storm or “dead” swell (swell 

caused by a storm far away) the 

spectrum is characterized by a 

relatively narrow directional 

distribution. Fig. 2.11 shows 

frequency-directed climatic spectrum 

of complex sea in the north-eastern 

part of the Black Sea [Boukhanovsky, 

et al, 2001]. This case requires 

application of multidimensional 

statistical analysis of condition of 

wave generation and helps to find the 

best classification of spectra, 

especially if different wave systems 

exist in the same frequency domain  

Alternation of a situation such as “storm” and “weather window” (slack sea) is usual for 

mid-latitudes regions [Davidan, 1995]. Wave statistics consider “storm” as a 

phenomenon when process h(t) is greater than a certain threshold. “Weather window” is 

the time when waves are less than the same threshold. If the threshold is Z (e.g. mean 

value h[t]), then upcrossing could be parameterized as an impulse with maximum height 

h+
, duration , interval  between adjacent storms and minimum height h

-
(fig.2.12).

Such parameterization allows interpretation of a series of storms and weather windows as 

a related sequence of stochastic surges or impulses, i.e. impulse random process 

[Tikhonov, 1982]. A sample can be generated as follows: 

n

k

k

j

jjk tZwt
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,)(  (2.31) 
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Fig. 2.11 Frequency-directed climatic spectrum of 

complex sea. North-eastern part of the Black Sea
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Fig 2.12 Parameterization of "storms" and "weather windows" sequence 

Function u(t) describes the shape of the non-dimensional impulse. A triangular shape of 

this function might be expressed as: 
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This shape serves as a good first approximation. Parameter  sets asymmetry of function 

u(t), see fig. 2.12. If  = 0.5, the function is symmetric.  

Analysis of interdependency of these parameters [Lopatoukhin, et al, 2000] shows that 

pairs of values (h
+
, h

-
), (h

+
, h

-
, ), ( , ) can be assumed independent for the first 

expansion. Therefore, the four-dimensional distribution for these parameters can be 

simplified: 

 ),(),(),,,( hfhfhhf

Each of these 2D distributions can be presented as: 

 )()|(),(;)()|(),( fhfhffhfhf

Distributions f( ) and f( ) are exponential distributions, since  and  are duration of 

upcrossings [Tikhonov, 1982; Leadbetter 1986]. The corresponding cumulative 

distribution can be taken in a generalized form with parameters  and k:
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k

x

x
xF exp1)(  (2.32) 

Distributions of h
+
 and h

-
 actually are extreme distributions [Leadbetter, 1986], since 

these values are extremes for storms and weather windows respectively. For the given 

values of duration  and  and threshold Z, they can be expressed as: 

Zththh

Zththh

t

t

:max

:max

0

0
 (2.33) 

Since wave height has a logarithmic-Gaussian distribution in a synoptic time scale (we 

mean time duration from several days to several weeks) and section by level Z does not 

affect distribution [Leadbetter, 1986]: 
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hF

for0

forexpexp
|  (2.34) 

Where A and B are the following functions of statistical moments: 

)(5772.0)()(
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B

A three-parameter Weibull distribution can serve as a good approximation of the above 

[Angelides, et al, 1981; Boukhanovsky, et al, 1998]: 

xB

ZxA

Zy
xyF exp1|  (2.35) 

Where the third parameter Z determines the threshold and the first two parameters A and 

B are estimated using sample data. 

The Monte-Carlo approach and use of formulae (2.32)-(2.35) make it possible to 

reproduce the whole variety of values of function SRN:
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Upper index “-1” means here the inversion of the cumulative distribution or in other 

words, computer generation of random numbers distributed according to a given 

function. Set )(k

i denotes a system of four computer-generated pseudo random numbers. 
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The data analysis shows that storm shapes are quite diverse and there are many ways to 

classify them. The classification results significantly depend on the selection of Z. The 

shapes are more diverse for smaller values of Z, while for larger values of Z they become 

more uniform.

One of possible classification shown in subchapter 9.12 of [Kobylinski and Kastner, 

2003] suggests 5 classes of storms [Boukhanovsky, et al, 2000]. An increase in the level 

Z leads to zero probability of the storms of 5
th

 class. Another classification was made 

based on the same data [Lopatoukhin, et al, 2000]. Discriminate analysis was used for 

this new classification. It resulted with a more detailed classification of the same storms. 

Eight types of storms for wave heights exceeding the mean seasonal wave height h=Z and 

four types for wave heights exceeding h=2Z and h=3Z were proposed, see table 2.4. 

Here, all storm types are corresponded with dominating meteorological conditions. It is 

worth mentioning that in spite of differences between the classification methods, the 

whole set of storm shapes for wave heights exceeding h=2Z fell almost similarly into the 

same four groups. 

Weather windows can also be classified similarly, see table 2.5.  

Table 2.4 A classification of storm shapes based on discriminate analysis 

Threshold

1h 2h 3h 1h 2h 3h
Type Shape Description 

Number of

storms
%

I
Steady increase and decrease 

of wind  
39 21 14 20.3 23.1 41.2 

II
Stable wind at phase of 

maximal storm development 40 39 4 20.8 42.9 11.8 

III

Duration of increase is 

considerably longer than one 

of decrease. This type is 

specific for “slow” storms 

33 16 7 17.1 17.6 20.6 

IV

Expressed asymmetry of the 

shape with domination of the 

decrease phase. This type is 

specific for “quick” storms. 

37 15 9 19.3 2.4 26.4 

V

 The discriminate analysis 

gives a separate type for this 

storm shape. It bears some 

similarity to type IV. This 

shape is typical for fast and 

deep cyclones. 

12 * * 6.3 * * 
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Table 2.4 A classification of storm shapes based on discriminate analysis (continued) 

VI

 Intermittent increase and 

decrease of waves caused by 

instabilities of the atmospheric 

flow. They are typical for a 

shallow or a slow moving 

cyclone.

8 * * 4.2 * * 

VII

 Passage of a deep cyclone 

with distinct separation of 

fronts.  Depending on the 

cyclone track wind wave field 

either develops having swell 

as its background or generates 

swell as a residual signal. 

19 * * 9.9 * * 

VIII
A “chain” of storms, which 

cannot be separated due to 

small threshold value of Z.

4 * * 2.1 * * 

Table 2.5 A classification of weather windows 

Threshold

1h 2h 3h 1h 2h 3h

Type Shape Description 
Number of 

weather windows
%

I
Smooth decrease and then 

increase of storm activity. 
31 22 16 14.9 22.2 47.1 

II
Wind waves in the “window” 

are much weaker than the 

selected threshold value h.
67 17 14 32.2 17.2 41.2 

III

Gradual increase of storm 

activity or result of passage of 

a chain of storms with 

different tracks. 

39 14 * 18.8 14.1 * 

IV
Strong residual wave field that 

is decaying after storm 

passage. 
49 16 * 23.6 2.2 * 

V
Wave heights close to the 

threshold value h.
22 30 4 10.5 30.3 11.7 
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The calculation of matrix of transitions between storms and weather windows shows that 

correlation is weaker between certain classes [Lopatoukhin, et al, 2000]. Therefore, it is 

possible to formulate the most probable scenarios of weather in the give region. 

The annual cycle of storms manifests itself in variations of the monthly mean wave 

height )(th  between seasons. Also, synoptic variability is higher in winter than in 

summer. Such cyclic variations can be expressed as: 

)()()()()( ttttmth  (2.37) 

Where: m(t) is the annually averaged value of wave height, (t) is the standard deviation 

of monthly mean wave heights from m(t). Process (t) can be modeled by stochastic 

models for extra-annual rhythms [Dragan, et al, 1987; Lopatoukhin, et al, 2000]. Finally, 

(t) is the impulse stochastic process described by (2.31) with parameters (2.36). The 

approach described above allows simulation of any weather scenario. 

2.4 Operational Components of an Assumed Situation 
1

When operating a ship, the master chooses a heading speed and a course angle in absolute 

(geographical) coordinates. Making such a decision, the master is aiming to reach his 

destination port in time and to avoid danger. In reality, such a decision takes a balance 

between safety and efficiency, between financial success and risk to life. A level where 

such a balance is established is dependent upon a huge number of circumstances, 

including economic criteria and human judgment. The human factor is most significant in 

this area of stability safety, and evidently, the probabilistic approach to stability could not 

be developed without taking the human factor into account [Sevastianov, 1982b; 

Mordachev, et al, 1994; Mordachev, 1995].

We will not try here to build a detailed model of human behavior while operating a ship. 

Nevertheless, we can set some very simple assumptions, which make it possible to cover 

a majority of the master's behavioral patterns that could be imagined. Such variants of 

behavior or strategies could be defined as follows: 

1. A "Careful" strategy assumes that the course and speed should be chosen to minimize 

risk of capsizing. Only one limitation should be taken into account: the ship should 

reach her destination after finite time. 

2. A "Mercantile" strategy assumes that course is direct between starting point and the 

destination, speed is maximal and danger of capsizing is not taken into account. 

Introducing these two assumed strategies reflects two main motivations of human 

behavior at sea: willingness to avoid danger and readiness to attain maximum profit. 

However, the master is able to make a mistake as any other human. To cover the 

possibility of a mistake, we should introduce the third strategy: 

3. A "Fool" strategy assumes that course and speed should be chosen to maximize risk 

of capsizing. Only one limitation should be taken into account: the ship should reach 

her destination after finite time. 

                                                          
1 Written in co-authorship with Prof. Sergey Mordachev of Kaliningrad Institute of Technology (Russia). 
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Using the above strategies, mathematical models of heading course choice and speed can 

be developed. Such models could be based on a detailed analysis of an actual ship 

operation taking into account recent psychological research or it may be quite simple - a 

matter of a special study. Again, we are not trying here to find a final solution, we only 

wish to indicate the point of application of such results in the general scheme of the 

probabilistic approach to evaluating stability safety. To do this, we shall consider a very 

simple model, which is based mainly on common sense. We assume that: 

A certain boundary level of capsizing risk exists; 

The level of risk depends on the sea state, heading velocity and course angle; 

The master is aware of the risk level; 

The "careful" master will try to keep his current level less than the boundary. To 

achieve this goal the “careful" master changes the course in order to avoid dangerous 

regions;

The "mercantile" master will not take any risk resulting in a delay in arriving at the 

destination in time; 

The "fool" master will try to keep his current level above the boundary. To achieve 

this goal, the “fool " master changes the course in order to go through “dangerous” 

regions

These strategies can be simulated using available ship routing software and wave 

databases. Changes in the weather can be modeled as it was described above, in 

subchapter 2.3. If we imagine that we do have methods to evaluate risk function, then we 

would receive three values: 

Averaged risk function for a given voyage, assuming a "careful" strategy C,

Averaged risk function for a given voyage, assuming a "mercantile" strategy M,

Averaged risk function for a given voyage, assuming a "fool" strategy F .

These values contain important information of the influence of a human factor on 

operation risk of particular ship: 

CMME  (2.39) 

This estimate describes the ship's ability to resist a human's premeditated mistakes caused 

by neglect of the danger of capsizing because of intent to gain profit: 

CFFE  (2.40) 

This estimate describes a ship's ability to resist human non-premeditated mistakes. This 

value can be considered as some estimation of the degree of a ship being "foolproof". 

To complete our consideration of the application of the probabilistic approach to a ship's 

stability estimation, we should address different scenarios of capsizing and the 

probability of their occurrence. We have defined an assumed situation by using all 

possible data, which describe environmental and human circumstances, because they both 

are external in relation to a ship. However, different physical phenomena could be 

responsible for capsizing, in the same assumed situation, see, for example, [Alman, et al 

1999]. For example, a ship could capsize in following or quartering seas because of 

decreasing stability on the wave crest, or because of parametric resonance, or because of 

broaching. Different physical phenomena require different algorithms for calculation of 

capsizing probability.
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Dynamics of Capsizing 
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Chapter 3  

Equations for Nonlinear Motions
1

Generally speaking, loss of ship stability (capsizing or catastrophic heel) is a 

phenomenon of ship motions in waves and therefore has to be considered as a result of 

fluid motion around the ship hull. Although a general formulation of the problem may not 

always be practical, it is important to start from one, in order to have a clear 

understanding of the assumptions made to develop more practical models. 

This chapter shows how the models for capsizing behavior are built and what 

assumptions and simplifications are involved. Generally, marine hydrodynamics focuses 

on a solid body moving on the free surface of water under the action of waves. In this 

chapter, we consider a ship in the middle of an ocean: so the water is deep and the shores 

are far away. It means that any influence of the ship motions is negligible at the shores. In 

other words, there are no boundaries of the fluid domain other than the free surface. 

Recognizing that the influence of forward speed is very important for ship 

hydrodynamics, we consider the ship with zero forward speed in this chapter to avoid 

complex derivations. The effect of forward speed on ship motions is discussed in detail in 

chapters 6, 8 and 9. 

We start with a brief review of hydrodynamics of the ship in waves: subchapters 3.1 

through 3.4 present the essence of the matter mostly following Newman [1977]. 

Therefore, results only are shown, since the derivations are available from the above 

source. Subchapters 3.5 and 3.6 consider a model of roll motions that will be used for 

capsizing study in the following chapters. 

3.1 General Equations of Fluid Motions 

3.1.1 Forces and Stresses in Fluid 

Force is a measure of interaction between bodies. To consider forces in a fluid, we 

mentally extract a volume from the fluid domain: To keep the status quo we have to 

compensate for the interaction with the rest of the fluid by applying forces all over its 

boundary, see fig. 3.1.

                                                          
1 The author is grateful to K. M. Weems and J.W. Kim for review and discussion of materials of this 

chapter. A.M. Reed, W.F. Belknap and M.J. Hughes performed a thorough review of this chapter which 

was very helpful for the preparation of the second edition and greatly appreciated. 
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This allows introducing an important concept of surface forces 

as internal reactions in fluid. Also, there are mass forces acting 

in the fluid, and gravity is one the most important of them for the 

waves and ship motions. 

These forces differ from one point in the fluid to another. They 

also are changing with time. Let us pick an arbitrary point in the 

vicinity of the boundary of the volume we just extracted and 

place a small tetrahedron around it, so its slope would be a small 

part of the boundary surface, see fig. 3.2. 

Consider the equation of forces acting on this small tetrahedron: 

zyxBM PPPPF
dt

vd
m  (3.1) 

Here m is a mass of fluid in the tetrahedron and v  its instant velocity. MF  is the mass 

force (not shown in fig. 3.2), BP is the surface force acting through the boundary surface 

element S, xP , yP  and zP  are the surface forces acting through the surfaces Sx, Sy and 

Sz belonging to the coordinate planes. 

Since the tetrahedron is small, the forces acting on 

it are small too. Therefore, we can consider them 

being proportional to corresponding volume and 

area values: The volume element for mass force and 

surface elements for the surface forces:

zzyyxx

B

SpSpSp

SpfV
dt

vd
V

 (3.2) 

Here, zyx pppf and,,  are the forces’ action on 

the unit volume and are through the unit area. 

Correspondingly,  is density of the fluid, V is the 

small volume of the tetrahedron. Dividing both 

parts by the area of boundary surface element S,

grouping surface–related terms on the left hand side and considering a limit while 

infinitely decreasing the size of the tetrahedron. 
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Here x¸ y, and z are edges of the tetrahedron, having in mind that the volume is 

proportional to the third degree of the linear size and the area to the second, we see that: 

0lim
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x

 (3.4) 

Fig. 3.2 Small tetrahedron on the 

boundary of the extracted volume 

Fig. 3.1 Forces acting in 

fluid
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Also:

zn
S

S
yn

S

S
xn

S

S zyx ;;  (3.5) 

where n  is a normal vector to the boundary surface element of unit length as it is shown 

in fig. 3.2, while zyx and, are vectors of unit length directed along coordinate axes 

(orts). So, the scalar product of a normal vector and an ort represent the cosine of the 

angle between two vectors. The equation (3.2) now can be re-written as: 

)()()( xnpynpxnpp zyxB  (3.6) 

We remember here that zyx ppp and,  are the forces acting on the unit area. Each of 

these vectors can be presented with their own components as: 

kpjpipp

kpjpipp

kpjpipp

zzzyzxz

yzyyyxy

xzxyxxx

 (3.7) 

These components are known as stresses: the stress is defined as the force acting on the 

specifically oriented surface of the unit area.  Therefore, the stress depends on the force 

and orientation of the surface. A value defined by the vector and the oriented surface is 

known in mathematics as a tensor, see for example [Bronshtein and Semendyayev, 1997]. 

A tensor can also be written in matrix form (  is a standard nomenclature for stress):  

333231

232221

131211

zzzyzx

yzyyyx

xzxyxx

zzzyzx

yzyyyx

xzxyxx

ppp

ppp

ppp

 (3.8) 

We also used numerical nomenclature for the coordinate axis: x-coordinate as number 1, 

y as 2 and z as 3. The matrix of a stress tensor is symmetric relative to the main diagonal 

[Newman, 1977]: 

jiij  (3.9) 

Using a similar nomenclature for the normal vector ),,( 321 nnnn , the stress on the 

boundary can be written as: 
3

1j

jijjijBi nnp  (3.10) 

The sign for summation can be skipped: the presence of index j ONLY on the right hand 

side of the formula is the indication that the summation is done by this index. The entire 

surface force then can be expressed with the integration of (3.10) over the surface S

covering the volume V:
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 (3.12) 
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In the tensor notation: 

S

jjjjjjB dSnknjniF 321

The same force, but expressed by components is presented in short record using tensor 

notation:

S

jijBi dSnF  (3.13) 

Mass forces are express with the integration of the fluid density over the volume V:

V

iiM dVfF  (3.14) 

3.1.2 Relationship of Volume and Surface Integrals. Transport Theorem 

Before proceeding further, let us review the theorems on the relationship of surface and 

volume integrals [Bronshtein and Semendyayev, 1997]. If we have a space with a 

differentiable vector defined in each point (continuous differentiable vector field), say 

),,( zyxQ , then: 

V S

dSnQdVk
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Q
j

y

Q
i

x

Q
 (3.15) 

Where S is surface “covering” volume V and n  is an outer normal vector to S with the 

unit length. This is the divergence theorem.  The divergence itself is the vector operator 

defined as: 

k
z
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Q
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x

Q
Qdiv  (3.16) 

If we have a space with a differentiable scalar defined in each point (continuous 

differentiable scalar field), say (x,y,z), then: 

V S

dSndVk
z

j
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i
x

 (3.17) 

With the S, V and n  defined as above. This is Gauss’s theorem.  The integrand of the 

volume integral is known as the gradient vector operator or just gradient: 

k
z

j
y

i
x

grad  (3.18) 

Similarity between the formulae (3.15) and (3.16) allows the introduction of vector 

operator -“nabla”, which is defined as: 

k
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i
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 (3.19) 
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It can be treated like a vector. If the operand is a vector, the operator results in divergence 

(3.16), if the operand is a scalar the result will be the gradient vector (3.18). It allows 

presenting both theorems in one formula: 

V S

dSnAdVA  (3.20) 

It expresses the divergence theorem if A is a vector and Gauss’s theorem if A is a scalar 

value.

The Transport theorem is another tool necessary to proceed. It helps to find the 

derivatives of volume integrals. Consider a differentiable scalar function defined in a 

vector field that changes with time: ),( txf . The transport theorem states, that for fluid 

volume V(t):

)()(
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itV

dVutxf
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txf
dVtxf

dt

d
 (3.21) 

Were ui is i-th component of fluid velocity vector in the given point. Note, that formula 

(3.21) is written in tensor notation, so sign of summation is omitted. Proof of the 

transport theorem can be found in [Newman, 1977]. 

3.1.3 Conservation of Mass and Momentum 

The law of mass conservation for the fluid can be expressed quite straight forward: 

0
)(tV

dV
dt

d

dt

dm
 (3.22) 

It could be interpreted as the fluid volume V(t) which still consists of the same fluid 

particles despite their changing position with time.

Conservation of momentum requires that the derivative of momentum equals the sum of 

the forces acting on the system of bodies: 

V

i

S

jij

V

i dVfdSndVu
dt

d
 (3.23) 

Momentum of the fluid volume consists of individual momentum of each fluid particle. 

The right side of the equation (3.23) contains surface (surface integral) and mass forces 

(volume integral) acting on volume V(t), see Subchapter 3.1.1.

Using the divergence theorem (3.15), it is possible to express momentum conservation in 

volume integrals only: 

V

i

i

ij

V

i dVf
x

dVu
dt

d
 (3.24) 

3.1.4 Continuity Equation. Euler’s Equations 

Application of the Transport theorem (3.21) to mass conservation equation (3.22) and 

replacing integration with a partial differential equation yields the Continuity equation, 
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which express the mass conservation law in simpler form, provided that the fluid density 

does not change with time: 

0V:notationVector0:notationTensor
i

i

x

u
 (3.25) 

Here V  is velocity of fluid particle and ui are its components: 

kujuiu 321V

Assuming constant fluid density, which, indeed, is the case for surface ships equation 

(3.25) is simplified even more:  

0V  (3.26) 

An analogous procedure (use of the Transport theorem with further transition to partial 

differential equation) applied to the equation of conservation of momentum (3.24) yields 

Euler’s equation: 
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 (3.27) 

Here, it is also assumed the flow is incompressible )0//( ixt , which is a fair 

assumption for water. Taking into account tensor notation used for equation (3.27), we 

find that the left hand side is actually a substantial derivative of the fluid velocity by time, 

which is the acceleration of the fluid particle: 

iM

j

iji F
xdt

du 1
 (3.28) 

More details on Continuity and Euler’s equations are available in [Newman, 1977]. 

3.1.5 Navier-Stokes Equations 

There is a large class of fluids for which stress is linearly dependent on strain rates. Such 

fluids typically have small viscosity and are called “Newtonian” liquids; water is one of 

them. For the Newtonian Fluid this relationship is expressed as: 

i

j
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i
ij

x

u

x

u
 (3.29) 

Here,  is the viscous shear coefficient. Equation (3.29) expresses the relation between 

shear stresses (which are forces - dynamic parameters) with spatial derivative of the 

velocities (kinematic parameters).  

This equation also implies that the fluid is isotropic and its qualities are the same in all 

directions. It is in line with our previous assumption that the density is a constant and it is 

definitely adequate for water when considering ship motions.  
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To derive equation of motions of a Newtonian fluid we need to substitute expression 

(3.29) in Euler’s equation. Since (3.29) includes only shear stresses, it would be 

necessary to include normal ones too: 

i
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i
ijij

x

u

x

u
p  (3.30) 

Here p is pressure, which is the value numerically equal to normal stress, but taken with 

the opposite sign, ij is Kronecker delta function: 
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 (3.31) 

Substitution of (3.30) into Euler’s equation and taking into account continuity equation 

(3.26) leads to the well-known Navier–Stokes equations (tensor notion, summation by 

index j):
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 (3.32) 

The same in the vector notation: 

MFVpVV
t

V 11 2  (3.33) 

Here  is a coefficient of kinematic viscosity: 

 (3.34) 

3.1.6 Boundary Conditions 

Expressions (3.32) or (3.33) represent a system of three partial differential equations. The 

unknowns are a vector-valued function of velocity (or three velocity components) of the 

fluid and scalar pressure. This system has an infinite number of solutions, to choose one 

of them, which describes flow during ship motions in waves, we have to apply certain 

limitations: set of initial conditions defining the system state at the initial moment and 

boundary conditions defining values for the unknown function (provided such a solution 

exists and it is stable). In the case of ship motion the fluid domain is limited by:  

Solid body – ship hull; 

Free surface; 

Far field conditions (consequences of ship motions cannot have serious influence 

on the flow far away from the ship). 

Physical boundary conditions might be dynamic and kinematic: dynamic boundary 

conditions provide equality of stresses on the boundary, for example: pressure at the free 

surface should be equal to atmospheric pressure. Kinematic boundary conditions apply 
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limitations on fluid velocity: for example, at the body boundary, the fluid velocity should 

be equal to the velocity of this particular point of the body. 

Once initial and boundary conditions are formulated, the system is theoretically ready for 

solution. The problem is that there are no analytical solutions for practical cases; such 

solutions are available for the very simple theoretical cases. 

A great deal of effort has been devoted to the development of numerical solutions to the 

Navier-Stokes equations using a wide variety of methods. Indeed, Navier-Stokes methods 

make up the core of the discipline of Computational Fluid Dynamics (CFD). In the field 

of marine hydrodynamics, computational Navier-Stokes methods have been applied to a 

number of aspects of ship flow problems, including the characterization of viscous roll 

damping, prediction of ship maneuvering coefficients, and calculation of propeller inflow 

and performance [Gorski, 2002], [Stern, et al 2006]. However, the calculation of the 

complete problem of a ship moving in waves is outside the practical capabilities of such 

methods at this time and is likely to remain so for the near future. 

3.2 Motions of Ideal Fluid 

3.2.1 Model of Ideal Fluid 

While a solution for Navier-Stokes equations poses significant numerical challenges, 

especially in the presence of free surface, we are in need for a simpler model to apply. At 

this moment we assumed that the fluid is a continuum, it has constant density and no 

compressibility, its physical qualities are the same in all directions (isotropic quality) and 

shear stress linearly depends on transverse velocity difference (Newtonian fluid). What 

kind of additional assumption could we make to simplify the model without giving away 

something significant for a correct description of ship motions and capsizing in waves?  

Let us think about viscosity: it is known from experiments that for water, viscosity plays 

a significant role in fluid motions only within the thin layer around the body. This layer, 

known as the boundary layer, is important for the correct prediction of drag force and 

propulsion performance. However, this is not very significant for the ship motions, 

because the latter is primarily influenced by surface wind waves, which are not so 

dependent on viscosity. The only exception is roll: it is known that roll damping does 

have a viscous contribution. 

At the same time the roll damping can be externally characterized and then added to the 

potential-flow based ship motions calculations. Viscous flow calculations using 

Reynolds-Averaged Navier-Stokes (RANS) are beginning to be used to build such roll 

damping models [Korpus and Falzarano, 1996], but model tests remain the most 

common, still fairly expensive, method of evaluating roll damping. In early stage design 

or in studies not related to particular ship hulls, an estimate of roll damping coefficients 

can typically be obtained from experience with similar ships or the published results of 

systematic hull form studies [Ikeda, et al, 1982, Ikeda and Kawahara, 1993, Ikeda, 2002]. 
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Therefore, assumption of a small viscosity influence seems to be acceptable and we 

further deal with inviscid or ideal fluid: 
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 (3.35) 

It is also important to note that the absence of the viscosity leads to the absence of shear 

stresses: there are no more interactions between layers.  

The next assumption is concerning mass forces. It is quite evident that the only mass 

force in the fluid that influences ship motions is gravitation. Other mass forces (such as 

electro-magnetic) might be important for other types of flow, but not for ship motion in 

waves. The important quality of gravity forces is that they are conservative: work of these 

forces along the closed line is zero. Taking into account also that the gravity acts 

downwards and it is in the negative direction of the third coordinate axis x3=z, Euler’s 

equations of motions (in tensor notation) are of the form: 
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Kelvin’s theorem states that for an inviscid or ideal fluid the amount of rotational motion 

is constant. Physically it is very clear, since there are no shear stresses, that it is 

impossible to change characteristics of rotational motion. This theorem allows us to 

introduce the next assumption that there is no rotational motion in the considered fluid 

domain. 

What consequences does this simplification lead to? Forces caused by rotational motions 

of fluid are principal for lifting surfaces, like rudders, bilge keels and other fin-like 

appendages. As we shall see shortly, simplifications achieved for the price of irrotational 

assumptions are principal, so it is worthwhile to accept this assumption and include the 

influence of the lifting surface as an external force dependent on local field of fluid 

velocities. 

Absence of rotational motions is expressed as: 
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Using the above formula makes Euler’s equations simpler: 
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The system of partial differential equations (3.38) does not contain any spatial derivatives 

of the fluid velocities. Further consideration shall show how significant these 

simplifications are. 
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3.2.2 Potential. Laplace and Bernoulli Equations. Green’s Theorem 

Assuming the irrotational character of fluid motions allows presenting the vector field of 

fluid velocity with a scalar field called potential. The potential is related with the fluid 

velocity as follows:  
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The same in the tensor notation: 

i

i
x

u

This is a significant simplification since instead of three values at each point of the fluid 

domain and at each moment of time we can address only one value.  

Let us consider how the principal equations expressing conservation of mass and 

momentum will look like for the new unknown function – potential.  

The Continuity equation expresses the mass conservation law as: 
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The same in the tensor notation: 

0
2

ii xx

This is a linear partial differential equation of the second order called the Laplace 

equation. This equation belongs to elliptical types of partial differential equations; it can 

be solved with initial and boundary conditions.  

A mathematical problem defined with an elliptic equation with an appropriate set of 

initial and boundary conditions belong to a class of Boundary Value Problems. Also, the 

Laplace equation is linear and it is generally easier to solve than nonlinear Navier-Stokes 

equations. The solution of the Laplace equation belongs to a certain class of harmonic 

functions.

For numerical solutions, the fact that the boundary value problem is easier to solve than 

Navier-Stokes translates into a significantly less amount of required computational 

resources. A mesh has to be defined at the boundaries only and the solution is much less 

mesh dependent. A dramatic simplification of the solution procedure actually justifies the 

inviscid fluid and irrotational motion assumption made above.  

Now we need to look at boundary conditions. Let us look again at Euler’s equation that 

expresses law of momentum conservation. Substitution of potential transforms it into the 

following form (in tensor notation): 
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Here C(t) is an arbitrary function, which does not depend on coordinates, but might be 

dependent on time. This formula, known as Euler’s Integral, is frequently called 

Bernoulli’s equation. It provides us with the important relationship between potential and 

pressure. This is especially important since we need to know the forces acting on a ship 

in waves to predict her motion.  

Bernoulli’s equation also will be needed to formulate the boundary condition on the free 

surface, but we will address this later. Generally, the ideal fluid problem requires less 

boundary conditions, because there are no shear stresses. 

Body boundary conditions also can be expressed in terms of the potential: 

),,,(),,,( tzyxntzyxV
n

B  (3.42) 

Here ),,,( tzyxVB  is a velocity of a body surface defined with coordinates x, y and z and

the time moment t; ),,,( tzyxn  is an outer normal vector to the body surface. The body 

boundary condition in the form (3.42) requires that the normal component of fluid 

velocity would be equal to the velocity of the corresponding body point at the place of 

contact. There might be however, a difference in tangential velocities, since shear stresses 

in the fluid are absent and we do not model the boundary layer, assumed to be very thin 

here. We will continue our consideration of the boundary condition later when discussing 

free surface and waves. 

Our brief review of potential and its properties would not be complete without 

mentioning Green’s theorem (to be exact, this is just one of its forms):  
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 (3.43) 

Here S is a closed surface,  and  are solutions for Laplace equations not necessarily 

matching any boundary conditions. More details can be found in [Newman, 1977]. 

3.2.3 Hydrodynamic Pressure Forces 

Now, consider forces acting on the body caused by hydrodynamic pressures, which being 

applied along the body surface SB produce the following force and moment: 

BS

dSnpF  (3.44) 

BS

dSnrpM  (3.45) 

Here n  is the normal vector of unit length at the body surface SB, r  is radius vector of 

this point. Vector n  points into the body. 

To facilitate the use of Gauss’s theorem (which is necessary for this derivation) we have 

to introduce matching surface SM to “enclose” the body and some fluid volume. Gauss’s 

theorem can only be applied to a finite volume “covered” with the surface, which now 

consists of matching surface SM and body surface SB.
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Considering the rate of change of momentum in the fluid volume (which is equal to the 

sum of all forces), using the Transport theorem and Bernoulli’s equation to express 

pressure through potential, we can express hydrodynamic force and moment in the 

following form: 
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Details of the derivation can be found in [Newman, 1977]. 

3.2.4 Forces on Moving Body in Unbounded Fluid. Added Masses 

Formulae (3.46) and (3.47) can be simplified if we consider the fluid domain to be 

unbounded. Naturally, the influence of the matching surface becomes very small and can 

be excluded: 
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The body is involved in arbitrary motion: nevertheless, it is always possible to present 

this motion as a composition of translational motion together with a certain point called 

centre of rotation and rotational motion about this point: 
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Here BV  is the velocity of translational motion of the body; 'r  is the radius vector of an 

arbitrary point originating from the mentioned above centre of rotation, say O’. Then, the 

velocity of an arbitrary point on the body surface, can be expressed as: 

'),,,( rVtzyxV BM  (3.51) 

Here  is the vector of angular velocity of rotation about the centre of rotation O’;

Then the body boundary condition, which is a normal component of velocity of an 

arbitrary point on the body surface, can be expressed as: 

nrnV
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We introduce a new notation of components of vectors BV  and :
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Let us also present the potential as: 
6

1i

iiu  (3.54) 

So, the potential consists of six components. Each component represents fluid velocities 

caused by the translational motion of the body along the coordinate axes (components 1, 

2 or 3) or rotation about these axes (components 4, 5 or 6) with the unit velocity. Each of 

these components is also a solution of the Laplace equation with the boundary conditions 

presented as (compare to 3.42):  
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Each of these potentials also has to satisfy the far-field condition: it has to be zero at an 

infinite distance from the body.  

Substitution of the new potential presentation (3.54) into formulae for force (3.48) and 

moment (3.49) allows us to evaluate the derivative taking into account that: 
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With the final result becoming: 
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Since we are free to choose an origin for the coordinate system, we can assume that at the 

present moment it coincides with the centre of rotation, so 00r .

Consider the components of force and moment. To avoid bulky records of the vector 

product, we introduce an auxiliary three-dimensional array jkl defined as: 

]3,1,2[],2,3,1[],1,2,3[,,if1

ororif0

]2,1,3[],1,3,2[],3,2,1[,if1

lkj

lkljkj

lj,k

jkl  (3.59) 

In other words, it equals 1 if the indexes are in cyclic order, -1 if vice versa and 0 if any 

of two indexes are equal. It allows writing components of the vector product in a concise 

manner. 
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Using the auxiliary array jkl as defined above and boundary conditions (3.55), the 

components of the force and moment vectors can be presented as: 
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Here, we used tensor notation, so summation symbols are not shown. i defines the index 

of the potential as in formula (3.54) so it changes from 1 to 6, index j defines the force 

and moment vector component, it runs from 1 to 3; indexes k and l are also related to 

vector components, but used to define elements of the vector product, so they are also in 

the range from 1 to 3. 

Both formulae (3.60) and (3.61) contain remarkably similar integrals: 
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These integrals are actually coefficients at the acceleration-related terms and they form a 

6 by 6 matrix. The values are known as added masses and they describe inertial 

properties of a body moving in a fluid other than ones of a gravitational nature.

Added mass depends on the body’s geometry. They express the influence of acceleration 

in the j-th mode on motion in i-th mode (both indexes are counted from 1 to 3 for 

translational and from 4 to 6 for rotational motions). As a result, added masses have 

different units, depending on the indexes:
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The matrix of added masses is symmetrical. It can easily be seen from Green’s theorem 

(3.43), as both i and j are solutions of the Laplace equation: 
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As a result, only 21 of the added masses are independent. Another feature is symmetry of 

the body: if it has one plane of symmetry, there are only 12 non-zero added masses, 

because all added mass having only one even index are equal to zero: 
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 0564536342523161412 mmmmmmmmm  (3.65) 

This case can be applied to the majority of ships in undamaged conditions. If the body 

has two planes of symmetry, it has only eight nonzero added masses, because: 

 02546241513 mmmmm  (3.66) 

Sometimes the ship can be considered as a symmetrical body relative to the midship 

section as well. It could help to simplify some problems of ship hydrodynamics, where 

the details of her shape are not that important such as a preliminary study of 

controllability. If there were three planes of symmetry, only the principal diagonal of the 

matrix would be non-zero. Such a simplification could be used for qualitative theoretical 

research only with the exception of several very specific cases like buoys, etc. Numerical 

values of the coefficients can be obtained using potential theory. Analytical results are 

available for some simple shapes, while the general case requires applications of 

numerical methods, so these symmetry considerations are rather a matter of convenience. 

As we indicated earlier, we have followed [Newman, 1977], where more information is 

available.

3.3 Waves 

3.3.1 Free Surface Boundary Conditions 

We have completed a very brief review of arbitrary body motion in boundless fluid. Now 

let us introduce a free surface and assume that the fluid is involved in wave motions. 

Here we will not look at how the ocean waves are generated: this is a separate subject; 

see [Phillips, 1977] or [Mei, 1983]. A general review of waves on the surface of water is 

also given in the Chapter 9 of [Kobylinski and Kastner, 2003]. Here we focus on very 

simple models that would lead to a model of ship motion and capsizing in waves.  

First, let us introduce the coordinate 

system. At this moment we consider the 

direction of wave propagation would 

make angle  with positive direction 

abscissa and z-coordinate is directed up, 

as is shown in fig. 3.3 (our coordinate 

system will differ from that used in 

[Newman, 1977]; as we have to be 

consistent with our further analyses). 

Now we try to formulate boundary conditions on the free surface. First of all, the 

particles should not leave the fluid domain. This is the kinematic boundary condition, 

which can be expressed as: 
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Fig. 3.3 Coordinate system for waves 
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Taking into account that the coordinates are orthogonal ( 0// yzxz ) and 

existence of the potential of fluid velocities, the final kinematic free surface boundary 

condition can be expressed as:

0
yyxxtz

www  (3.68) 

Another boundary condition to be satisfied is that the pressure on the free surface should 

be equal to the atmospheric one: 

 0app  (3.69) 

This is the dynamical boundary condition, using Bernoulli’s equation (3.41). It can be 

written as (choosing the initial time moment so that arbitrary constant C(t) equals zero):  
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3.3.2 Linearized Free Surface Boundary Conditions. Theory of Small Waves 

The expressions (3.68) and (3.70) are nonlinear partial differential equations. In order to 

derive equations of ship motions in waves, we will have to linearize it. Actually, this is 

not completely relevant for the ultimate purpose of this study: steep waves, indeed, are 

the most dangerous for ship stability. However, a completely consistent analytical model 

is not known at this time and WE HAVE to make this kind of assumption to proceed, 

especially having in mind applicability of the superposition principle, which will be 

necessary to consider for irregular waves (Chapter 8). The next best thing, though, is to 

get a clear understanding of what is assumed and how it might affect the final results.  

The linearization of the kinematic boundary conditions leads to the following 

assumptions: 

1. The wave elevation is small, therefore its slopes xw /  and yw /  have the 

same order as that of tw /

2. The water velocities x/ , y/  and z/  are also small values; they are 

proportional to wave motion and have the same order as the wave slopes. 

3. Since the wave elevation is small, the dynamical boundary condition can be 

considered on 0z , instead of 0w

These assumptions effectively mean that the wave is small and allows dropping nonlinear 

terms both in (3.58) and (3.60). The linearized kinematic free surface boundary 

conditions are formulated as: 
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The linearized dynamical boundary condition can be expressed as: 
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Differentiating both sides of (3.72) by t with further substitution into (3.71) allows 

deriving the combined boundary condition:  

0
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 (3.73) 

3.3.3 Plane Progressive Small Waves 

We shall limit ourselves to plane progressive waves here. Later, in Chapter 8 we will 

consider different models for irregular waves.  

The free surface is assumed to have a form of cosine function as:  

 )sincoscos(),,( tkykxtyx Aww  (3.74) 

Where Aw is the wave amplitude (one half of wave height),  is wave frequency, k is the 

wave number (spatial frequency) is angle of wave propagation relative to the axis of the 

abscissa and  is initial phase. Here, we can always choose initial moment for =0.

Wave frequency has evident relation with the wave period Tw. The wave number is 

related to the wave length .

2
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 (3.75) 

The velocity of the wave profile (phase velocity):  
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The flow velocity potential is searched in the form, similar to wave profile: 

tiyxikzZtzyx )sincos(exp)(Re),,,(  (3.77) 

Here 1i . To be a solution, the potential (3.77) has to satisfy the Laplace equation 

and free surface boundary condition. If we substitute the potential (3.77) into the Laplace 

equation (3.40), the following ordinary differential equation appears: 
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Once we find the solution Z(z) for the equation (3.78), the Laplace equation is satisfied. 

Since the equation (3.78) is a linear ordinary differential equation of the second order 

with a constant coefficient, it does not present a problem (however, we will be reviewing 

ordinary linear differential equations of the second order because of their special 

importance for the subject in subchapter 3.4). The solution of (3.78) exists in a form: 

)exp()exp()( kzDkzCzZ  (3.79) 

Arbitrary constants C and D are to be defined by boundary conditions. If we consider 

deep water, influence of surface wave motion should decay with increasing depth. 

00),,,(lim Dtzyx
z

 (3.80) 
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Substitution of potential (3.77) with (3.79) and (3.80) into a linearized free surface 

boundary condition in the form (3.72) delivers the second arbitrary constant: 

i
gC Aw

1
 (3.81) 

The potential itself now is presented as:  
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Substituting (3.82) into the combined boundary condition of the form (3.73) reveals 

another relationship between wave number and wave frequency:  
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Formula (3.73) is called the dispersion relation and, in this form, it is true only for small 

waves. Partial derivatives of the potential are components of the velocity of fluid 

particles: 
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These formulae suggest an orbital 

character of fluid and a particle 

motion in the plane defined 

sincos yx  that is a well-known 

outcome of the theory of small waves 

- see fig. 3.4.

According to this scheme, there is no 

mass transfer – all fluid particles 

move with closed trajectories and 

their averaged velocities are zero. 

Theory of small waves also allows 

taking into account finite depth of the 

fluid domain altering accordingly 

boundary condition (3.80) see 

[Newman, 1977]. 

Completing our consideration of waves here, we would like once again to emphasize that 

application of small waves theory for large amplitude roll and capsizing of ships is an 

approximation. Review of the background of nonlinear waves can be found in [Newman, 

Fig. 3.4 Motions of fluid particles in small progressive 

plane wave 

Aw exp(kz)

z

xcos ysin

Vp
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1977], also [Whitham, 1974] can be recommended. Several nonlinear wave phenomena 

could be actually captured with the theory for ideal fluid.  

3.4 Ship Response in Regular Small Waves 

3.4.1 System of Coordinates 

First, we have to determine a system of coordinates. This choice is a matter of 

convenience and tradition. While considering hydrostatics and stability in a static sense 

only one coordinate system was sufficient. Here, (as in subchapter 10.1 of [Kobylinski 

and Kastner, 2003]) we need three systems (fig. 3.5): 

A global system  is fixed to the Earth. Position of its origin O is arbitrary. 

Sometimes, however, it is convenient to substitute it with the semi-movable 

system that moves with constant forward speed. 

“Main” semi-movable system x y z; in most of the cases, its origin is located in 

the centre of mass G, which plays a role in the centre of rotation, however 

sometimes it is more convenient to have in the waterplane (point O’). Motion of 

this system coincides with translational motion of the ship.  

Ship-fixed system x’ y’ z’; it is the same as is traditionally used in ship 

hydrostatics with the only difference that the origin is placed in the waterplane 

point O’ or centre of mass G instead of the point K.

Fig. 3.5 Coordinate systems 

The relationship between global and a ship-fixed coordinate system are defined with the 

following set of formulae [Voitkunsky, 1985]: 
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coscos'cossin'sin' zyxG  (3.87) 

3.4.2 Formulation of the Problem

Consider a ship with zero forward speed under the action of a small wave of sinusoidal 

form we discussed in subchapter 3.3. We expect the resulting potential of fluid velocities 

to be contributed from flow caused by wave and body motion: 

WBt),,,(  (3.88) 

Here B is the potential of fluid velocities induced by the body motions; this potential can 

be presented in the form (3.54) as the sum of unit potentials, while W is the potential of 

flow caused by the wave including the interference with the wave diffracted from the 

body as an obstacle. 

We have seen that the wave that has a sinusoidal form also has a similar form analogous 

to potential: compare equations (3.74) and (3.82). So, it will be quite logical to search the 

potential of fluid velocities caused by ship motions in a similar form. 
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Here j is fluid velocity potential caused by the j-th component of body motion and it 

does not include any wave influence, while wA is the potential of fluid velocities 

expressing influence of incident and diffracted waves. We have assumed here a 

sinusoidal form for all the potential; this allows taking the term tiexp  out of the inner 

parentheses. What is left within these parentheses is, indeed, the amplitude. So, actually, 

we consider further the potential caused by the motion with the amplitude equal to unity. 

Then, Aj are amplitudes of ship motions for j-th degrees of freedom. 

As we have seen from the case of body motion in an unbounded fluid, unit potentials 

have to satisfy body boundary conditions (3.55), which have to be re-written in terms of 

amplitude for our case:  

6,5,4'

3,2,1

3 jnri
n

jni
n

j

j

j

j

 (3.90) 

The unit amplitude velocity potentials j caused by the body motions are also called 

radiation potentials referring to the fact that a moving body on the surface of the ideal 

fluid generates waves. 

As we mentioned above, Aw is the potential of fluid velocities expressing the influence 

of incident and diffracted waves: 
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70Aw  (3.91) 

Where 0 is the potential of incident waves (3.82) and 0 is the potential of the fluid 

velocities caused by the diffracted wave. Since the body motion influence is expressed 

with radiation potentials, we can consider wave diffraction as on an unmovable obstacle. 

Then, the body boundary condition for wA can be expressed as: 

0
n

Aw  (3.92) 

Let us assign: 

AwAA 70  (3.93) 

This definition allows rewriting (3.89) in a more compact form: 
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All the potentials included in the formula (3.81) must be solutions of the Laplace 

equation:

 7,...,1,0,0 jj  (3.95) 

Besides body boundary conditions, these potentials have to satisfy linearized free surface 

boundary conditions as defined with equations (3.72)-(3.73) taking into account that we 

are working with unit amplitude potentials: 
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Finally, to ensure uniqueness of solutions, we have to introduce far field conditions that 

are very far away from the body where only incident and radiated waves exist (radiation 

condition), see [Newman, 1977, 1978] for more information. 

Now we use Bernoulli’s equation (3.41) keeping only the linear terms and chose the 

initial moment to have C(t)=0: 
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This equation allows expressing pressure through fluid velocity potential: 
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Integration of these pressures over the surface of the ship hull produces hydrodynamic 

forces and moments: 
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Substitution of wave-induced velocity potential allows easy classification of forces: 
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The classification becomes evident since we know what the nature of contribution of 

each potential is. Now we can consider them separately. 

3.4.3 Hydrostatic Forces 

Hydrostatic force and moment are defined by the first component in the formulae (3.100) 

and (3.101):

BS

Hs dSngF  (3.102) 

BS

Hs dSnrgM  (3.103) 

Integration of formulae (3.102) and (3.103) has to be done by the instant wetted surface 

of the ship hull. It is more convenient to use the ship-fixed coordinate system for this 

purpose. Following assumptions that motions are small, we consider cosine functions in 

(3.85)-(3.87) being equal to 1, sine functions being equal to the value of the angle, 

expressed in radians and we also drop all the terms of the second order. This allows 

significant simplification of the transition to the ship-fixed coordinate system, so 

linearized formulae are as follows: 

'''0 zyx  (3.104) 

'''0 zyx  (3.105) 

 '''0 zyx  (3.106) 

Formulae (3.104)-(3.106) can be presented in the vector form too: 

'' 0 rrrr R  (3.107) 

Here: ),,(r  is the radius vector of a point on the ship surface in global coordinate 

system, ),,( 000r is radius vector of the origin of ship-fixed coordinate system, 
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)',','(' zyxr  is radius vector of a point at ship surface defined in the ship-fixed coordinate 

system and ),,(R  is the vector describing rotation of a ship. 

Following the logic of small motion assumptions, we consider changes in the wetted 

surface due to ship motion as a small value; so we shall further count the submerged area 

as the still water waterline. 

It is also more conventional and convenient to consider all the moments relative to the 

centre of gravity, so instead of (3.103) we are going to work with: 

BS

Hs dSnrrgM )( 0  (3.108) 

To convert surface integrals in formulae (3.102) and (3.108) into volumes we need the 

surface to be closed; at the same time integrands for both of them equal on the instant 

waterplane and due to the previously made assumption, this waterplane coincides with 

the calm water surface, so 

00 SSS

Hs dSngdSngF

B

 (3.109) 
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 (3.110) 

Where S0 is instant/calm water waterplane, where =0, so the second integral also equals 

zero. Now we can re-write these formulae with volume integrals, using Gauss’s theorem 

(3.17):
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tgVkdVgkdVgF
tVtV
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Were V(t) is the instant submerged volume. 
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 (3.112) 

Our goal is to relate hydrostatic force and moment with geometrical characteristics of the 

ship hull, so we switch to ship-fixed coordinate system using formulae (3.104)-(3.106): 

dVizyxjzyxgM
tV

Hs
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)'''()'''('  (3.113) 

The instant submerged volume can be presented as the volume displacement (in calm 

water, of course) and additional volume, which submerges or emerges due to ship 

motion. The difference of these volumes could be obtained by surface integration along 

the waterplane as the volume between planes  and z’=0:

dSyxVdSzVtVVtV
SS

)'''()'()()(

00

0000  (3.114) 
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This presentation is approximate, but it is in line with our small motion assumption. The 

domain of integration of (3.112) also can be presented in this form: 

dVizyxjzyxg
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Using expression (3.114), the second integral in (3.115) can be presented as: 
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 (3.116) 

After the internal integral in (3.116) can be evaluated analytically, formulae for 

hydrostatic force and moment expressed in ship-fixed coordinates take the following 

form: 
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Now, we can consider integration of each term of (3.107) and (3.108) and determine its 

relationship with ship hull geometry: 

Area of the waterline and its static moments relative to axes x’ and y’: 

000

';'; 210

SSS

dSySdSxSdSS  (3.119) 

The above formulae are related with the location of centre of flotation as: 
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Moments of inertia of the waterplane area: 
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Location of buoyancy centre: 
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The above formulae allow presenting hydrostatic force and moment in a form: 

21000 SSSgkgVkFHs  (3.123) 

iSSSjSSSg

izyxjzyxgVM BBBBBBHs

221220121110

0 )()('
 (3.124) 

As it is known from ship hydrostatics and as it is evident from formulae (3.119), if the 

waterplane is symmetrical relative to the centerline, which is true for most ships, then: 

 002 fyS  (3.125) 

If a ship is symmetrical relative to its center-plane, which, again, is the case for most of 

the ships (in undamaged conditions) combined moment of inertia, S12 becomes zero and 

the same can be said for the ordinate of buoyancy centre 

0and012 ByS  (3.126) 

We also have a freedom to place the origin of the ship-fixed coordinate system in the 

centre of floatation: it will illuminate another static moment relative axes of abscissa: 

 001 fxS  (3.127) 

The considerations (3.125) – (3.127) offer some simplifications in formulae for 

hydrostatic force and moment (for certain types of hull geometry only!): 

000 SVgkFHs  (3.128) 
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As it is clearly seen from the formulae (3.128) and (3.129) that within our assumptions 

for small waves, small motions and the ship hull geometry with one vertical symmetry 

plane, there is only the vertical hydrostatic force; and the hydrostatic moment exists only 

about the x and y axes. 

3.4.4 Added Mass and Wave Damping 

Let us consider now the second term in formulae (3.100) and (3.101) that describes forces 

related with radiation potentials: 
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ti dSneiF
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 (3.131) 

Re-writing these equations as vector components, and substituting body boundary 

conditions (3.90) allows presenting both force and moment in unified form (we also swap 

integration and summation for convenience sake): 
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eiF  (3.132) 

Here, we use index k to identify the component of force (k=1,2,3) and moment (k=4,5,6)

instead of index i as we did before; to avoid possible confusion with imaginary unit 

1i . We try not to use i as an index while working with complex values. 

The above formula is somewhat similar to equations (3.60) and (3.61) that represent force 

and moment action on the body in an unbounded fluid. Following this pattern we 

introduce the following coefficient: 

BS

k
jjk dS

n
f  (3.133) 

The major difference between the coefficient introduced above and the one defined by 

(3.62) is that (3.133) is a complex value. It has to be complex, because we have free 

surface here, which is different from the case of unbounded fluid. Motion of the body in 

the vicinity of free surface would make waves. The potential for the wave motions must 

have an imaginary term to describe periodic character of the fluid flow, as we have seen 

from subchapter 3.3 where the example with a plane progressive wave was considered.

As a result, the coefficient (3.133) is presented in the following form:  

jkjkjk biaf 2  (3.134) 

Substitution of the definition (3.134) into equation (3.132) lead to the following for the 

force and moment: 

6

1j

jjkjjkk baF  (3.135) 

Here jandj  are acceleration and velocities for all six degrees of freedom of ship 

motions, defined correspondingly as: 
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ti
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 (3.136) 

The coefficient akj is multiplied with acceleration, and therefore plays a role of measure 

of inertia. It is defined as added mass for body motion in the vicinity of free surface. 

Generally it does not equal the added mass for the same body moving in unbounded 

fluid:

kjjk ma  (3.137) 

Coefficient bkj is multiplied with body velocities, so it takes the place of the damping 

term in the equation of a mechanical oscillator (we study that equation later in subchapter 

3.5). It is defined as the wave damping coefficient that describes transfer of energy from 

ship motions to surface waves. 
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Both the added mass and wave damping coefficient depend on wave frequency. For  the 

case of zero forward speed, both these figures are represented with symmetric matrixes: 

kjjkkjjk bbaa ;  (3.138) 

More information on the properties of these values can be found in [Newman, 1977, 

1978].

3.4.5 Wave Forces: Formulation of the Problem 

Consider the third term of equations (3.100) and (3.101) describing wave action on the 

ship. As we pointed out above, in subchapter 3.4.2, there are two potentials 0 and 7

representing fluid velocities caused by incident and diffracted waves: 
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W dSneiF 70Re  (3.139) 
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Correspondingly, there are two components present in the wave force: one is the result of 

pressures related with incident wave potential and another one related with diffracted 

wave potential.

The first component could be considered as wave force (and moment) acting on a ship in 

waves, but calculated with the assumption that the ship does not affect fluid velocities by 

her presence. This assumption is known as the Froude-Krylov hypothesis; this wave’s 

force component sometimes is called Froude-Krylov force. 

The second component, then, represents the disturbance that a ship makes to the fluid 

velocities in an incident wave by her presence. This disturbance here is understood as a 

reflection only, since making of waves by a moving ship is already taken into account 

with radiation potentials, which result in added mass and wave damping. Therefore, we 

have to consider a ship as an unmovable obstacle for the purpose of calculation of this 

force. This wave force component is called the hydrodynamic or diffraction force (and 

moment).  

3.4.6 Froude-Krylov Forces 

Consider Froude-Krylov force first:
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W FeidSneiF
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ReRe 0  (3.141) 

With FK

AwF  playing the role of amplitude of the Froude-Krylov force: 

BS

FK

Aw dSnF 0  (3.142) 

We use Gauss’s theorem to perform transition from the surface to volume integral, 

adding and subtracting the integral on the waterplane to “close” the surface: 
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 (3.143) 

To facilitate further derivation and reveal the structure of equations of ship motions in 

waves, we assume that the waves are not only small (in a sense of amplitude), but also 

long in comparison with the ship. This would allow expanding potential 0 in a Taylor 

series in the location of the ship: 
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Since we consider the ship as an unmovable obstacle, we can place the origin of the 

global coordinate system into the centre of floatation – therefore: 

 0;0;0 000  (3.145) 

Following the assumption of long and small-amplitude waves, we keep only the first-

order terms in (3.143): 

000
00 )0(),,(  (3.146) 

Here, )0,0,0()0( 00  means the potential is calculated at the origin of the coordinate 

system. We can use this approximate presentation of the potential (3.146) in the formula 

for amplitude of Froude-Krylov (3.143), keeping in mind that the potential now is a linear 

function of coordinates: 
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 (3.147) 

Using definitions (3.119) and keeping in mind that since ship motions is not included in 

these derivations, the fixed and global coordinate systems coincide. Also, since the 

waterplane is actually a horizontal flat plane, where =0, the normal vector n  coincides 

with vector k :
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Consider a moment of the Froude-Krylov force: 
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We define amplitude of this moment as 
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Following an analogous procedure, the above formula has to be converted into a sum of 

the volume integral over a submerged part of the hull and a surface integral over the 

waterplane:
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'' 00
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Aw dSnrdVrM  (3.151) 

Substitution of a Taylor expansion for the incident wave potential (3.146) allows 

significant simplification of the formula (3.151). We also take into account that S0 is the 

horizontal flat surface with =0 and the normal vector n  coincides with vector k :
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We use definitions (3.119)-(3.122); again, since the ship is considered as an unmovable 

obstacle and the origin of global coordinate system is placed onto the floatation centre, all 

the coordinate systems are identical.  
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Here, Br  is the radius vector of centre of buoyancy originated from the centre of 

floatation. If the ship is symmetrical relative to the center-plane and the origin of the 

coordinate system is still located in the centre of flotation, formulae (3.125-3.127) allow 

significant simplifying expressions for amplitude of Froude-Krylov force and moment: 
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Assuming the wave being plane and progressive, we can express unit potential 0 as 

)sincos(exp
)exp(

0 ikki
g

tiAw

W  (3.156) 

Where W is the plane progressive wave potential described with formula (3.82).  
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Substitution of (3.156) into (3.154) and (3.155) allows presenting the complex amplitude 

of Froude-Krylov forces in a form of vector components. We continue to use numbering 

for degrees of freedom, extending it to the forces: where numbers 1 to 3 correspond to 

vector components of the force and numbers 4 to 6 correspond to vector components of 

the moment. We also are using expression (3.83) for wave number and 1i .
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Substitution of (3.147)-(3.152) into formulae for Froude-Krylov force and moment 

(3.141) and (3.149) yields the final expression within limits of small-amplitude and long 

wave assumptions: 
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3.4.7 Hydrodynamic or Diffraction Wave Forces 

Now we consider the hydrodynamic or diffraction component of the wave forces and 

moments, which describes disturbance to wave pressures caused by the ship’s presence. 

As we pointed out earlier, the disturbance we mean is the wave reflection: we already 

included the wave generation effect into radiation potentials, so we assume a ship 

unmovable. As zero forward speed is assumed, Khaskind relations can be used, leading 

directly to the result in a form of equations (3.183). However, full derivations are carried 

out here, to demonstrate the technique that can be used for the cases when the forward 

speed is not zero. 
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Applying boundary conditions (3.90) for (3.169) and (3.170), we rewrite these formulae 

as the vector component: 
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Here, j are the radiation potentials that we have used in subchapter 3.4.4. Following the 

accepted assumptions of small-amplitudes and long waves, the diffraction potential can 

be approximated as:  

0
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0
17

i
 (3.172) 

Here, 0 is the unit amplitude potential of incident waves defined for the origin of the 

coordinate system in the centre of floatation and 1, 2 and 3 are radiation potentials 

corresponding to three translation motions [Newman, 1977, 1978]. 

Substitution of this approximation into (3.172) reveals complex coefficients of added 

masses and wave damping (3.133): 
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The adopted assumptions allow using formulae (3.146) for complex unit-amplitude 

potential for incident waves; substitution of expression (3.134) yields the following form 

for the diffraction component of wave forces: 
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It is possible to simplify formula (3.174) further with time derivatives of wave profile at 

the origin of the coordinate system. Consider derivatives of wave height first: 
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 (3.175) 

Now, consider motion of the wave profile along the direction of the wave propagation, 

which is defined as: 

sincos0x  (3.176) 
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Substitution of the definition (3.176) in the equation for wave profile (3.74) yields the 

formula for wave height with respect of new axes 

)cos(),( 00 tkxtx Aww  (3.177) 

Motion of the wave profile along the axes  can be derived taking into account orbital 

motion of the fluid particle in the fluid domain, affected by the wave. This includes fluid 

particles located on the free surface: their orbital motion actually makes the wave profile 

move:

)sin()( 0

22 tkxt AwwAww  (3.178) 

Using (3.176) we can express motion of the wave profile in the coordinate system :

 )sincossin(cos),,( tkkt Aww  (3.179) 

 )sincossin(sin),,( tkkt Aww  (3.180) 

Calculation of the time derivatives of (3.179) and (3.180) is easy: 
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Substitution of formulae (3.175), (3.181) and (3.182) into (3.174) allows us to re-write 

the expression for the diffraction component in compact form:  
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Here, we used the derivatives of generalized coordinates of the wave profile Wk  and Wk

in the following sense:  

wWwWwW 321 ;;  (3.184) 

3.4.8 Body Mass Forces  

We completed consideration of the forces acting on the body from a fluid. To write a 

system of equations for ship motions in waves, we need to add mass forces describing 

inertia, which are not dependent if the body moves in a fluid or in a vacuum. 

Let us consider a body moving in 3-dimensional space. As it is well known from 

theoretical mechanics, any motion of the body can be presented as translation together 

with some point that is called the centre of rotation and rotation about this point, and as a 

result the velocity of any point of the body can be presented with formula (3.51). We 

copy this formula here with slightly changed nomenclature to avoid possible confusion: 

MCM rVV  (3.185) 
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Here MV  is velocity of any point in the body, defined with radius vector ),,( MMMM zyxr ,

originating from the centre of rotation C¸ that is involved in translational motion with the 

velocity CV , while the rest of the body rotates about it with the angular velocity .

This velocity, however, also can be presented in the following form: 
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iiM buV  (3.186) 

Here, ib  are unit vectors corresponding to each degree of freedom: the first three 

correspond to translations and the second three to rotations: 
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Values ui are projections of the vectors of translation and rotation velocities: 
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Now we consider the amount of kinetic energy of the infinitely small volume within the 

body:
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The whole amount of kinetic energy is expressed through the integration of the 

elementary amounts over the body volume: 
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Swapping integration and summation reveals the matrix that describes inertial properties 

of the body and only depends on its geometry: 
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This matrix sized 6 x 6 elements is similar to the added masses matrix (to be exact, the 

added masses matrix is similar to this one). The units for the terms of this matrix are 

given with equation (3.63). This matrix is symmetrical because of the corresponding 

property of the scalar product of vectors. Calculation of the terms of this matrix is not 

difficult, just bulky, so we give the final formulae only. 

The first 9 terms of the matrix have mass units:  
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The next 18 terms (i = 4..6, j = 1..3 and i = 1..3, j = 4..6) are static moments and related 

with the position of centre of mass: 
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 0363652254114 MMMMMM  (3.197) 

Finally the last 9 terms (i = 4..6, j = 4..6) are moments of inertia: 
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All the above formulae are summarized below in the form of the mass matrix: 
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Besides inertia, mass of the body determines its weight.  

kmgW  (3.205) 
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Since we put the origin of the coordinate system into the centre of floatation, the weight 

force creates the moment: 

GW rWM  (3.206) 

Here, Gr  is the radius vector of the centre of gravity in the global coordinate system. 

The following assumption of small motions, the coordinate of the centre of gravity in the 

global system can be defined with the formulae (3.104)-(3.106)  

GGGG zyx  (3.207) 

GGGG zyx  (3.208) 

GGGG zyx  (3.209) 

Here, xG, yG and zG  are coordinates of the centre of gravity in the ship-fixed coordinate 

system. Substituting (3.195) and (3.197)-(3.199) into (3.196) yields the following 

expression for the moment created by the weight force: 

jzyxmgizyxmgM GGGGGGW )()(  (3.210) 

3.4.9 Linear Equation of Motions 

Here, our purpose is put all the forces together and build equations of ship motions in 

waves. However, before we proceed let us change the coordinate system fixed to a ship. 

It is both convenient and conventional to place the origin of the ship-fixed coordinate 

system at the centre of gravity. Also, from now on we shall assume that the ship is 

symmetrical relative to the center-plane: 

 0;0 GB yy  (3.211) 

It is known from theoretical mechanics that if a body has a plane of symmetry; then the 

principal axis of inertia is perpendicular to this plane. Since the y –coordinate is 

perpendicular to the center-plane, it is the principal axis of inertia. . As most vessels of 

conventional configuration are relatively long bodies (width and depth are smaller than 

length), it is usually assumed that other two axes relative to the y-axis are also principal 

axes of inertia and all centrifugal moments of inertia are close to zero.  

 0zxyzxy III  (3.212) 

Placing the origin of coordinate system at the center of gravity also makes all static 

moments equal to zero. As a result, the matrix of inertia becomes simpler: 
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According to d’Alembert’s principle, equations of motions can be built by equalizing the 

vector sum of all the forces and moments acting on the body to principal vector and 

moment of inertia force. Since the ship-fixed coordinate system uses principal axes of 

inertia, the motion equations (as was shown by Euler) have the following appearance: 
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Following small motion assumption, the components of the principal vector and moment 

of inertia can be presented as:  
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Here, we continue to follow the numbering convention that the first three components 

correspond to translation motion and the other three to rotation. Mij is the inertia matrix 

defined with equation (3.213).

Since we have shifted the origin of the ship-fixed coordinate systems to centre of gravity, 

we have to correct all the moments, because they were written relative to the flotation 

centre. Let us start with the hydrostatic moment. As is known from theoretical mechanics, 

the value of this correction to be applied is as follows: 

HsG

C

Hc FrM '  (3.216) 

Here, Gr is the radius vector of the centre of floatation relative to the centre of gravity: 

kjir fGfGfGG )()()('  (3.217) 

Using small-motion assumptions and equations (3.104)-(3.106):

kzxjzxizxr GGGGGGG )''()''()''('  (3.218) 

Substitution of (3.218) into (3.216) yields the correction: 

jzxizxgVM GGGGC )''()''(0  (3.219) 

Nonlinear terms were excluded from (3.219) to be consistent with the small amplitude 

motion assumption. Taking into account conditions of static equilibrium in calm water 

for a freely floating body: 

mVxx BG ;  (3.220) 

The principal moment of hydrostatic forces relative to the centre of gravity is expressed 

as:

iGMjGMgVM LHs 0'  (3.221) 
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Were GM and GML are the transverse and longitudinal metacentric heights respectively – 

we have used formulae from ship hydrostatics that relate the moment of inertia of the 

waterplane area, positions of gravity and buoyancy with metacentric height.  

Considering the moment created by weight (3.210) we note that it equals zero, since the 

origin of the coordinate system is located at the point where the weight force is applied – 

at the centre of gravity.

It is convenient for further derivations to present the sum of the hydrostatic and weight 

forces and moments in the form of a matrix multiplied with the motions using the same 

numbering convention as we did for added masses. However, for those derivations with 

the small amplitude motion assumption, only three elements of this matrix would be 

different from zero: 
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Finally, the component of hydrostatic forces is expressed as:
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Next, consider forces and moments related with radiation potentials (3.135). This formula 

contains coefficients aij and bij that are respectively real and imaginary parts of the 

integral (3.133) calculated over the submerged ship surface. This surface usually cannot 

be expressed in simple analytical functions and, as a result, the integral (3.133) has to be 

calculated numerically. Then, it is enough to define the surface in the ship-fixed 

coordinate system with the origin in the centre of gravity, to include these forces in our 

equation.

Froude-Krylov wave forces can be considered as the principal vector, defined with 

components (3.163)-(3.165) and the principal moment, components of which are defined 

with equations (3.166)-(3.168). Correction due to change of the origin from the centre of 

flotation to the centre of gravity is defined as:

W

FKG

C

FK FrM  (3.224) 

Here, Gr is the radius vector of the centre of floatation relative to the centre of gravity 

defined as (3.217). The difference with the case of hydrostatic forces is that we do not 

take into account ship motions while calculating wave forces. As a result, there the radius 

vector can be presented in the following form: 

kzjixr GGG '0''  (3.225) 

Substitution of (3.225), (3.163)-(3.165) into (3.224) with further addition of the 

components of the result to corresponding projections (3.166)-(3.168) gives the following 

formulae for the moment of Froude-Krylov forces relative to the centre of gravity: 

tGMVF Aw

FK

W sinsin2

04  (3.226) 



Chapter 3 94 

tGMVtgxSF LGAw
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06

FK

WF  (3.228) 

Here, we have used formulae for ship statics and equilibrium condition for a freely 

floating body (3.220).

Re-writing of the moments of diffraction wave forces (3.183) into the coordinate system 

with the origin located at the centre of gravity is automatic. Since this expression uses the 

same added mass and wave damping coefficients as forces and moments related with the 

radiation potential, these coefficients should be already calculated in the coordinate 

system with the origin at the centre of gravity.  

Combining formulae (3.215) with (3.223), (3.135), (3.163-166), (3.226-228) and (3.183) 

we finally write the system of ship motion equation in regular waves: 
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This is the system of ordinary differential equations of the second order that will be the 

subject of further study in the next subchapter. 

3.5 Linear Equation of Roll Motions 

3.5.1 Adequacy of Linear Equation of Motions 

Let us now repeat the set of assumptions made in order to derive the equation of motions 

in a form of (3.229).  

First of all, the fluid is inviscid and there is no rotation motion. This allows conversion of 

the fluid domain problem in a boundary value problem. 

The boundary conditions are linearized: that means that the waves are small, in other 

words, wave length is large in comparison with wave height. 

The ship is small in comparison with waves, or waves are long in comparison with the 

ship.

And finally, the ship motions are small. 

The last assumption is quite clearly incompatible with the ultimate purpose of our study, 

since motions that might lead to capsizing are definitely not small, so the model (3.229) 

does not seem to be adequate for a stability study. 

Nevertheless, despite the clear inadequacy of the result, all the above derivations and 

their results are extremely important, because they revealed the structure and nature of 

forces acting on the ship in waves. The model (3.229) is a foundation for further 

development. Since the structure of forces is known, we can study them separately and 
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put together a new model for each force that will be adequate for the problem. We shall 

do so in subchapter 3.5.

There were attempts to derive ship motion equations including nonlinear terms from the 

very beginning, (such as [Lugovsky, 1980]), but these derivations lead to very 

complicated equations, which are very difficult to analyze. This is the main reason why 

we still need a “simplistic”, though consistent, linear approach.

3.5.2 Calculation of Forces and Motions

Formulae (3.229) represent a system of six ordinary linear differential equations, which 

can be solved analytically. Before considering such a solution, let us examine a matrix of 

added masses in waves again. Since most ships are symmetrical relative to the center- 

plane, the formula (3.65) can be applied and the matrix for added mass looks as follows 

(with the matrix of damping coefficients similarly analogous): 
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The character of matrix (3.230) points out that the relationships between some kinds of 

ship motions are stronger than others. This illustrates the known fact [Lewis, 1989] that 

ship longitudinal motions (surge, heave, and pitch) can be considered separately from 

transverse motions (sway, roll, and yaw) at least within frames of the linear approach. 

Formulae for the Froude-Krylov component of the wave forces (3.163-165), (3.226-228) 

show that the maximum wave action for surge, and pitch might be expected in 

longitudinal waves )1(cos , while the peak for sway and roll is beam waves 

)1(sin . Heave wave forces do not depend on the direction of the waves’ 

propagation. Since the equations are linear, we can expect the largest ship response when 

wave forces reach their maximum for this particular kind of motion.  

As result, we can carry out calculations separately for sway, heave and roll in beam 

waves and for heave and pitch in longitudinal waves. Further, we will consider these 

problems separately, with an emphasis on roll motion. 

To make equations (3.219) more practical, some of the assumptions summarized in 

subchapter 3.5.1 have to be worked around. First of all, it concerns the small size of a 

ship in comparison with waves. 

One (and the oldest) way to solve this problem is introduction of reduction coefficients 

[Blagoveshchensky, 1962]. These coefficients are used to correct wave forces: the 

Froude-Krylov component is reduced; the diffraction component might be either reduced 

or increased. This method is usually accompanied with empirical formulae for added 

masses and wave damping coefficients. 
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Another approach is the strip theory where the 3-Dimensional (3D) problem is substituted 

with a set of 2-Dimensional (2D) problems. A ship is presented as a number of transverse 

sections. Each of these 2D problems considers an infinite cylinder moving in waves and 

the transverse section of this cylinder coincides with one taken from the ship hull. The 

solution of a 2D problem is considered as a force acting in this section of the ship (strip). 

The result is obtained by the integration of these solutions over the ship length; see 

[Lewis, 1989] for more information.  

A more theoretically consistent approach is offered by slender body theory, where the 

main assumption is that one dimension of a ship larger than the other, which is true for 

most of ships. Newman [1977, 1978] covers the fundamentals of this theory.  

The panel method allows considering fully 3-D flow without any limitations or 

assumptions concerning the form of the submerged part of the hull. The idea of the 

method is to present a body (and sometimes free surface) with a set of flat panels. Then, 

elementary flow: source or sink is placed in the middle of each panel. Intensity of each 

source or sink is searched numerically to match initial conditions on the body and 

(sometimes) on the free surface. Once intensities of the sources and sinks are found, the 

potential can be found by summation (intensity of source or sinks define the potential of 

the flow around it) [Chang, 1977; Inglis and Price, 1982].

Introduction of the panel method eliminates any limitations of the geometry of the body 

and the wave length. However, the motions still are assumed to be small. If this 

assumption is abandoned, the equation (3.219) becomes nonlinear and their analytical 

solution is no longer possible. This creates the whole new approach based on numerical 

integration of differential equations (we consider this later in subchapter 4.2.5) with 

simultaneous calculations of hydrodynamic forces with the panel method [Scavounos and 

Nakos, 1988; Lin and Yu, 1990; Shin, et al, 1997]. The main advantage of this approach 

is a possibility to include forces that cannot be obtained with the ideal fluid approach 

[Belenky, et al, 2002]. Comprehensive state-of-the art review of computational methods 

for ship motions could be found in [Beck and Reed, 2001]. 

3.5.3 Isolated Linear Equation of Roll Motions 

Our main interest lays, of course, in the roll motion equation, since it is where capsizing 

might happen. Here, we consider the linear equation of roll as a foundation for further 

nonlinear study. As we have seen from the previous subchapter, there is no influence of 

pitching and surging within frames of linear theory. Taking into account (3.230), we 

extract equation number 4 from (3.229) and using (3.183), (3.222) and (3.226): 
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To reveal most principal properties of roll motions, we neglect the influence from 

different degrees of freedom completely: the result is the isolated equation of roll: 
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The isolated roll equation (3.232) is very similar to the equation for a mechanical linear 

oscillator, for example a pendulum, where wave forces play a role in excitation. We 

consider this analogy later; at this moment let us present this equation in standard form, 

we also present the right hand side in a form of a single trigonometric function.  

EE tsin2 2  (3.233) 

Here:
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3.5.4 Other Forms of Linear Equation of Roll Motions 

Further simplification of the roll equation can be reached by neglecting the diffraction 

component of the wave force: it is small in comparison with the Froude-Krylov part. 

Such equation of roll sometimes is called “shortened”: 

tES sin2 2  (3.237) 

The amplitude of the wave forces: 
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As can be seen from the expressions (3.233) and (3.237), the difference between the 

“full” and shortened equations of roll is only amplitude and initial phase excitation. 

It is convenient to express amplitude of wave excitation through the angle of wave slope, 

which can be found with partial differentiation of the profile equation (3.177). The 

derivative has to be calculated by the direction of wave propagation x0:
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Where Aw is the amplitude of wave slope: 
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 (3.240) 

The angle of wave slope at the location of a ship: 

tt AwW sin),0(  (3.241) 
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The above formulae allow expressing amplitudes of wave excitation for “full” (3.233) 

and shortened (3.237) equations in terms of amplitudes of wave slope, correspondingly: 
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Some authors [Semenov-Tian-Schansky, et al, 1969] consider a slightly different 

equation of roll: 
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The difference between the above expression and the roll equation (3.232) is the way the 

diffraction forces are written. This form of roll equation allows introduction of so-called 

relative coordinates:

sinWr  (3.245) 

Substituting (3.235) into (3.234) leads to the following: 

tArrrr sin)(2 2  (3.246) 

Where r is the amplitude of excitation in relative coordinates that can be expressed as 

follows: 
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3.5.5 Solution of Linear Equation of Roll Motions 

As can be seen clearly from the formula (3.236), the third form of the roll equation has 

the same structure as the previous two forms written in “absolute” coordinates (this term 

is used contrary to “relative” coordinates). All these forms of the roll motion presentation 

are ordinary linear differential equations with constant coefficients and sinusoidal 

excitation. We briefly review its solution.

The equation (3.233) includes the wave excitation term and therefore is heterogeneous 

(from Greek heteros –different, here it means a differential equation with a term that does 

not depend on an unknown function). We are interested in all types of roll motions, so we 

are looking for a general solution. 

As it is known from calculus, a general solution of such an equation can be found as a 

sum of general solutions of a corresponding autonomous equation and particular solution 

of a heterogeneous equation [Bronshtein and Semendyayev, 1997].  

 )()()( ttt PG  (3.248) 

Here G is the general solution of the corresponding autonomous equation and p is 

particular solution of heterogeneous equation.
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3.5.6 Linear Roll Motions in Calm Water 

The corresponding autonomous equation is obtained from (3.233) by eliminating all the 

terms that do not depend on an unknown function. In our case it means that the 

corresponding autonomous equation does not contain wave excitation and therefore it 

describes roll motion of a ship in calm water (naturally with certain initial roll angle 

and/or angular velocity): 

02 2

GGG  (3.249) 

To solve the ordinary differential equation means to find a function that would turn the 

equation into true equality. Let us try to search the solution in the form of an exponent: 

 )exp()( tCtG  (3.250) 

Substitution of (3.250) into (3.249) turns the differential equation into an algebraic one. 

This equation is called the characteristic equation: 

02 22  (3.251) 

This is the well-known quadratic equation. It has two solutions: 
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Solutions of the characteristic equation are called eigenvalues. There are two of them and 

so there are two solutions of the differential equation (3.251). As it is known, the sum of 

two solutions of the linear differential equation is also a solution of this equation:  

 )exp()exp()( 2211 tCtCtG  (3.253) 

Also, if discriminate 0D  and 21 , components of the solution for (3.253) are 

linearly independent (it is impossible to express one through another using linear 

operations only). Then, as it is proven in mathematics, the solution for (3.253) constitutes 

a general solution of the differential equation of the second order: it means that any 

solution of (3.249) can be expressed through (3.253) by changing arbitrary constants C1

and C2.

Depending on the sign of discriminate (3.252), eigenvalues may be real or complex. It is 

quite typical for the roll motion of a ship that: 

 0D  (3.254) 

So, the eigenvalues are complex: 

1;22

2,1 ii  (3.255) 

Substitution of eigenvalues (3.255) into general solution (3.253) makes it look as follows: 

 )sin()exp()( 000 ttt aG  (3.256) 

Here, the imaginary part of the eigenvalues makes the frequency: 
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22
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Also, we have re-written arbitrary constants in a form of amplitude and phase: 
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These arbitrary constant can be expressed through initial conditions: to do that we need to 

set 0t  and require that the initial roll angle and angular velocity would be equal to the 

specified quantities. Since the roll motion is described with a differential equation of the 

second order and, as a result we have two arbitrary constants, it is enough to provide two 

initial conditions for the initial roll angle and angular velocity: 

00 )0(;)0( tt GG  (3.259) 

The system of two algebraic equations (3.258) has two unknowns, and therefore may be 

solved:
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Formula (3.260) describes decaying oscillation, shown in fig 3.6. These oscillations 

however never die out completely; since the term )exp( t , which is responsible for the 

decay asymptotically tends to zero:   

0)exp(lim t
t

Fig. 3.6 Roll oscillations in calm water 

If we imagine that waves are not generated, there will be no damping at all, and the 

oscillations would be described with the simple sinusoidal curve: 

 )sin()( 00 tt a  (3.261) 

This finally clarifies the meaning of coefficient : it a frequency of small oscillations in 

assumption that damping is absent or very small. This frequency is called “natural” 

frequency and contains very important information on a ship as dynamical system. As we 

have seen from the formula (3.234) above, the natural frequency is dependent on the 

metacentric height and, therefore, contains important stability information. 

0

t0

)exp(0 ta
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Natural frequency does not differ very much from damped roll oscillation frequency 0,

since small roll motions are generally slightly damped. 

3.5.7 Linear Roll in Waves 

Particular solution of the heterogeneous equation, needed for (3.238) is searched in a 

form similar to the form of excitation, e.g. in a form of sine function with the excitation 

frequency, but with unknown amplitude and phase shift: 

 )sin()( EaP tt  (3.262) 

Let us substitute the expected solution (3.262) into the linear roll equation (3.233). The 

first derivative of (3.262) contains a cosine function and therefore is linearly independent 

on the solution itself. Equalizing sine and cosine function separately allows converting it 

into a system of two algebraic equations. The solution of this system would define 

amplitude and phase of the particular solution we are searching for:  

22
22222

2
arctan;

4

E
a  (3.263) 

To complete the general solution of the heterogeneous equation, we have to re-define 

arbitrary constants with the addition of a particular solution: 

00 )0()0(;)0()0( tttt PGPG  (3.264) 

This leads to the following formulae for arbitrary constants:  
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The final form for solution of the linear roll equation is 

 )sin()sin()exp()( 000 Eaa tttt  (3.267) 

It is clear from this formula that the oscillations with frequency 0 will decay, and the 

system will move with the frequency of a wave; see fig. 3.7.  

Fig. 3.7 Solution of linear roll equation 
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Figure 3.8 Response curves of linear roll 

motion with different damping. 

As is shown in fig. 3.7, two types of motions can be observed: transition process, during 

which influence of initial conditions affects the motions; and steady state mode of 

motions, when the system moves with excitation frequency. This is a manifestation of 

one of the fundamental properties of a dynamical system: an ability to synchronize itself 

with external excitation. Linear differential equations have a clear and elegant mechanism 

for this phenomenon: the general solution of an autonomous equation dies out and leaves 

the particular solution of the heterogeneous equation “alone”, which actually has the 

excitation frequency. 

This also means, since the transition is not something that is found for linear system only, 

capsizing could happen only during transition. Once roll oscillation in regular waves 

reaches a steady state, the question on the possibility of capsizing is senseless: it did 

happen already, or will never happen (with the exception of the quite theoretical situation 

when capsizing occurs on every period).  

3.5.8 Steady State Roll Motions. Memory Effect 

A steady state solution of the roll equation defined by particular solution of the 

heterogeneous equation is capable to reproduce one very important phenomenon: 

resonance.

If we look at the formula for amplitude of steady state response more closely, we see that 

it reaches maximum, when frequency of excitation equals frequency of damped 

oscillation in calm water, (also see fig. 3.8). 

2
max E

aa

The fact that the amplitude of steady state 

roll has a maximum means that certain wave 

frequencies lead to larger responses than 

others. In other words, there is a frequency 

range where response is amplified. This 

phenomenon is known as resonance.  

It is clear from formulae (3.263) and (3.268) 

that the amplitude in resonance depends on 

damping, and less damping means larger 

response amplitude in resonance regime. The 

influence of damping is less, or almost none, 

outside of the resonance region, see fig. 3.8. 

Dependence of the response amplitude on 

excitation frequency, as shown in fig.3.8, is 

called the “response curve”. More information on roll resonance in beam seas is available 

from Chapter 10 of [Kobylinski and Kastner, 2003].

So far, ship roll in waves looks almost identical to a mechanical oscillator with the 

exception of the fact that coefficients of the linear roll equation (added mass and wave 

damping) depend on wave frequency. There is a principal difference between a ship roll 
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and a pendulum, beyond the frequency dependent coefficients. A ship makes waves. 

These waves depend on ship motions at the moment they were generated. Then, these 

waves move away, still holding the information of ship motions in the past. Moreover, 

flow of fluid caused by these waves has an effect on distribution of pressure in entire 

fluid domain. This means that ship motions in waves cannot be completely determined 

with the previous time step, as it is true for a mechanical oscillator. This “memory effect” 

decays with time, since waves move further from the ship. That is why it does not 

undermine the presentation of a ship as a dynamical system; understanding however, that 

such a presentation is not exact and should be considered only as an approximation, see 

[Newman, 1977] for more information. 

3.6 Nonlinear Roll Equation 

The equation of roll motions considered above is linear. It is the result of the assumptions 

that the wave is small. As we noted already, it means that the model only describes small 

ship motions. Transition to large roll angles requires the introduction of nonlinear terms 

into the ship motion equations. As we pointed out, there is no theory available to derive 

nonlinear ship motions equations in a consistent manner. So we use a “physics-based” 

approach, considering forces of a different nature separately and try to combine them into 

one model of nonlinear roll, suitable for capsizing study. 

3.6.1 Classification of Forces  

The forces acting on a ship in a seaway can be classified in the following manner: 

Inertial hydrodynamic forces (e.g. added mass), 

Wave damping hydrodynamic forces, 

Viscous damping forces, 

Hydrostatic forces, 

Wave excitation forces, 

Other forces, including: 

Aerodynamic forces, 

Forces caused by green water, 

Appendage forces (including damping from rudders, bilge keels and anti-roll 

fins), 

Forces due to fluid motion in internal tanks including anti-roll tanks, 

Hull "maneuvering" forces, propeller thrust, etc. 

There are other ways to classify these forces. This classification assigns forces of a 

different nature to the same category. However, it reflects a role that force plays in ship 

motions.
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3.6.2 Inertial Hydrodynamic Forces and Moments 

Inertial hydrodynamic forces and moments express changing inertial qualities of the body 

in a fluid as opposed to a vacuum. We considered them in subchapter 3.4.4 within frames 

of linear assumptions as a part of forces related to radiation potentials.  

These linear assumptions suggest that the generated waves have small amplitudes and 

body motions are themselves small, so changing of underwater geometry was not taken 

into account. However, when roll angles are large, this influence might be significant. We 

will return to this matter in Chapter 7, where the problem of deck-in-water is studied. 

3.6.3 Hydrodynamic Wave Damping Forces 

Generally, damping and resistance forces represent transfer of kinetic energy of the 

moving body to the fluid. There are several ways to do this, so we are talking about 

components of a different physical nature. (Here, we use the hydrodynamic rather than 

general physics meaning of “physical nature”. Strictly speaking, all these forces have a 

gravitational and electromagnetic nature.).  

We already identified wave damping while considering forces related with radiation 

potential in subchapter 3.4.4. These forces describe losses of energy that are taken away 

by waves generated by the ship. When we examined the linear equation of roll in 

subchapter 3.5, wave dumping was the only phenomenon included that is “responsible” 

for roll decay in calm water and synchronization of roll in waves with excitation 

frequency.

3.6.4 Viscous Damping Forces 

Wave generation is not the only way of damping of ship motions. 

As it was mentioned in subchapter 3.2.1, viscous forces are significant for roll damping. 

These forces are the result of an exchange of energy between layers of fluid: we have 

discussed this briefly in subchapter 3.1.5. So, a body moving in the fluid would transfer 

some of its energy to the closest layer; then it will be transferred further and further from 

the body. Part of the kinetic energy of the body finally will be converted into kinetic 

energy of fluid molecules and will result in a rise of the fluid’s temperature. The viscous 

forces have been profoundly studied by theoretical and applied fluid dynamics. Another 

phenomenon related to viscosity is generation of vortexes. 

As we have seen from subchapter 3.4.4, a linear expression was enough to describe wave 

damping for small motions. To take into account the viscous and vortex component of 

roll damping, a second power term is used: 

2bbM D  (3.269) 

Coefficients b and b2 have to be determined from the roll decay test: so all three 

components contribute to both coefficients. Basic information on roll decay test can be 

found in [Bhattacharyya, 1978].
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The absolute value in formula (3.269) might create certain analytical difficulties, since it 

requires consideration of two domains )0;0(  separately, so sometimes it is 

more convenient to present nonlinear damping as:  

3

3bbM D  (3.270) 

When the deck enters the water, roll damping changes dramatically: the deck edge 

generates vortexes, so damping might depend on roll and wave slope angles as well; we 

will return to this problem in Chapter 7. 

At the same time, nonlinearity of damping does not introduce qualitative changes into the 

roll model. With several exceptions, we can keep damping linear, but it does not mean 

that only wave forces are taken into account. It would be more accurate to think about the 

linear coefficient b as an equivalent damping coefficient that includes the influence of all 

three components of roll damping. 

The only application where nonlinearity of roll damping may play a qualitative role is 

parametric resonance, because steady state parametric roll is only possible in a nonlinear 

system. We will consider parametric resonance in Chapter 6. 

3.6.5 Other Forces 

Aerodynamic forces and moments are caused by interaction of the non-submerged part of 

a ship with airflow. The airflow is created by wind for the majority of ships; speed is 

usually too small to create aerodynamic drag that would be comparable with other forces.  

The wind heeling moment usually is included in models for stability regulations, see 

subchapter 3.5 of [Kobylinski and Kastner, 2003]. 

Numerical values for aerodynamic forces are usually available from model experiments. 

These values are typically presented in the form of non-dimensional coefficients Cx, Cy,

Cz, Cmx, Cmy, Cmz. Projection of aerodynamic forces and moments are expressed as: 
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The choice of specific areas Awx, Awy, Awz and specific length lwx, lwy, lwz is arbitrary; this is 

a matter of convenience of presenting and processing data of the experiment. These 

values are needed just to make the coefficients non-dimensional. We will return to 

aerodynamic forces and moments in subchapter 7.1. 

Forces caused by greenwater shipping can alter ship behavior in waves. The water on 

deck causes an additional heeling moment that is also included in the model for stability 

regulations (see [Kobylinski and Kastner, 2003], subchapter 3.3). That model, however 

did not consider dynamic effects of the green water behavior. These effects include 
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“sloshing”, ingress and outflow through the freeing ports, over the bulwark or deck edge. 

We discuss these forces and how they affect ship dynamics in subchapter 7.2. 

Hull “maneuvering” forces are of a hydrodynamic lifting nature and related with vortex 

flow. These forces may have a significant influence on the possibility of capsizing due to 

broaching and will be considered in Chapter 6. 

Thrust force, rudder force and other hydrodynamic forces generated by ship equipment 

might have certain influences on stability. This action will be also addressed when we 

will be considering specific issues such as stability in following and quartering seas. 

Finally, it is important to mention forces created by different anti-roll devices such as 

fins, and U-tube tanks. This type of equipment creates forces that mitigate roll and 

therefore, are capable of improving dynamic stability of ships. Their influence, however, 

is beyond the scope of the present book, besides perhaps, roll damping, which might be 

included in formulae (3.269) or (3.270). 

3.6.6 Wave Excitation Forces 

We have examined wave excitation forces and moments earlier in subchapters 3.4.5 

through 3.4.7, using assumptions of small-amplitude waves and small ship motions. As 

we already noted, finite-amplitude waves can be considered using the nonlinear boundary 

condition on the free surface (3.70) instead of the linearized condition (3.73). The 

problem of nonlinear wave action on the body is numerically complicated, however there 

are a number of solutions available [Kim and Yue, 1989; Malenica and Molin, 1995; 

Ferrant, 1998]. Such an analysis, however, is beyond the scope of this book. 

The other linear assumption is that ship motions are small, which allow ignoring changes 

of the underwater geometry. If this assumption is not made, the complete result can only 

be reached by time domain simulation only [Lin and Yue, 1990]. The consequences of 

keeping these assumptions can be mitigated using the roll equation in relative coordinates 

(3.246) with nonlinear hydrostatic terms; we will examine this option in the next 

subchapter.

3.6.7 Hydrostatic Forces: Structure of Nonlinear Roll Equation 

Hydrostatic forces and moments are the direct outcome from Archimedean law. They are 

the result of the summation of hydrostatic pressure over the surface of a ship’s hull: we 

have examined them in subchapter 3.4.3 with the assumption that ship motions are small. 

This assumption cannot be used anymore. Hydrostatic forces and moments are 

“responsible” for restoring action and they determine equilibria of the floating body. That 

is why hydrostatic forces have to be at least qualitatively correctly described in our 

model.

Dependence of the restoring moment on the heel angle has a nonlinear character. To take 

into account that roll angles are not small, the term GMgV0  in the equation (3.222) 

has to be substituted with the instantaneous restoring moment: for calm water, it is the 

well-known GZ curve.
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Usage of the term “hydrostatic” does not necessarily imply calm water. This term only 

reflects the fact that the fluid is heavy and the pressures created by its weight are 

transferred in all directions. If the water is not calm, its surface experiences a wave 

deformation, which alter hydrostatics just because there is more water in one place and 

less in the other.  

So, strictly speaking, we cannot use the GZ curve for the above purpose, since it is 

calculated for calm water. Theoretically, we have to integrate hydrostatic pressures over 

the surface of the ship hull, taking into account curvature of the wave surface. Such an 

approach is used for time domain simulation [Lin and Yue, 1990; Shin, et al 1997; Shin 

et al 2003]. However, for the qualitative study, it is not necessary to do it: the restoring 

moment in the wave is qualitatively the same as that in calm water. 

The only exception is when a ship is heading in longitudinal waves: the change in the 

restoring moment is quite significant there (see [Kobylinski and Kastner, 2003], 

subchapter 10.10). We will return to this matter later in Chapter 6 where stability in 

following and quartering seas is discussed. 

Another problem is associated with the fact that the buoyancy force is directed 

perpendicularly to the water surface. If we assume that wave slope sinW  is an 

angle of inclination of the water surface, than the restoring moment can be written as: 

 )()( 00 rR GZgVGZgVM  (3.273) 

Hence, only the relative roll angle creates the righting arm, which makes the roll equation 

with relative coordinates (3.246) our first nonlinear model: 

tf Arrrr sin)()(2 2  (3.274) 

With: 
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Terms in the roll equation with relative coordinates are differences between moments 

acting on the ship and corresponding terms of wave excitation. So, the restoring term in 

(3.246) also is a difference between the roll restoring moment and the Froude-Krylov part 

of the wave excitation.

In general, it is impossible to separate the Froude-Krylov part of the wave excitation and 

roll hydrostatic moment: GZ does not have an analytical form. To do this, some 

approximation of the GZ curve is required. An odd power polynomial is one of the most 

popular methods (usually 3
rd

 degree is sufficient): 
3

3)( rrr cf  (3.276) 

Let us try to separate Froude-Krylov excitation from hydrostatic restoring by substituting 

the relative roll angle (3.245) into equation (3.274): 
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Wave slope angles are much smaller than roll angles, so deleting higher orders of the 

term  appears to be appropriate: 
2

3

3

3 3)( ccf  (3.278) 

The term 2

33c  is usually ignored for the sake of simplicity; there are no data indicating 

this term alters the qualitative behavior of the system. Then, we can separate excitation 

and restoring terms resulting in an equation with absolute roll angles as follows: 

EE tc sin)(2 3

3

2  (3.279) 

Keeping in mind the above simplifications, we can rewrite the equation (3.279) back to a 

general form: 

EE tf sin)(2 2  (3.280) 

An alternative way to introduce restoring nonlinearity into the roll equation is to consider 

the nonlinear Froude-Krylov wave excitation as: 

42422004444

1
)()()( baGZVgGZgVbaI xx  (3.281) 

Taking into account that the angle of wave slope is a relatively small value in comparison 

with roll, nonlinearity of excitation might be dropped and the above equation will be 

converted into (3.280).

The above derivations demonstrated that the procedure for developing the nonlinear 

model is artificial and it is not mathematically rigorous. However, it can be accepted so 

far as the model is qualitatively adequate. Analysis of the adequacy of the mathematical 

model is closely related with the particular problem to be studied. So, we will be 

changing the above models further, as necessary, trying to maintain this adequacy. 

Finally, the structure of the equations (3.274) (3.280) and (3.281) is the same. It makes all 

further development equally applicable to all of them
1
.

                                                          
1 With the only exception that for the equation in relative coordinates amplitude of excitation depends on 

the frequency of excitation. 
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Chapter 4 

Nonlinear Roll Motion in Regular Beam Seas
1

4.1 Free Roll Motion 

4.1.1 Free Oscillations of Nonlinear System 

Following the methodology used earlier, we will describe free nonlinear roll motion as: 

0)(2 f  (4.1)  

We give the initial inclination to the system, say a and then let the system move freely. 

Since there is no damping, the oscillations will never fade: their amplitude is equal to the 

initial inclination. The period of these oscillations can be found from the equation (4.1) 

by re-writing it in the first integral form assuming that the initial conditions correspond to 

an amplitude value for the roll angle and zero for the roll rate:
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)()( dfF . Further derivations lead to: 
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Performing integration from zero to an amplitude value yields a quarter of a period. The 

entire period is determined as: 
a

FF

d
T

a

a

0 )()(

22
)(  (4.2) 

The integral in formula (4.2) is improper. There are several methods to calculate this 

integral numerically. The best results however, are achieved with the following 

substitution (Krein-Sizov formula): 
                                                          
1 The author is grateful to Prof. M.A.S. Neves for his detailed review of this chapter during preparation of 

the second edition. 
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A graph indicating the dependence of the free oscillation frequency initial amplitude is 

given in fig. 4.1. This curve is frequently called the “backbone” curve. 

This curve has several important qualities: 

The period of free oscillations depends on initial 

amplitude. This is a nonlinear property: the 

period of free oscillations of a linear system does 

not depend on any initial conditions, in other 

words, free oscillations of a linear system are 

isochronous. Free oscillations of nonlinear 

systems are not isochronous. 

The period of free oscillations of a nonlinear 

system is equal to the period of a corresponding 

linear system, when the initial amplitude is 

small: 

2
)(lim

0
aT

a

 (4.4) 

The period of free oscillation equals infinity when the initial amplitude equals to the 

angle of vanishing stability. The angle of vanishing stability is an unstable equilibrium 

(see [Kobylinski and Kastner 2003], subchapter 8.3). If the system is placed exactly at the 

unstable equilibrium position, it stays there until disturbed. If there is no disturbance 

(which never happens in the physical world), the system remains there forever. 

)( vT  (4.5) 

Free motions of a nonlinear system is periodic, but may be far from sinusoidal. 

Nonlinearity influences on the shape of the time history curve are stronger when the 

initial angle is closer to the angle of vanishing stability, see fig. 4.2. 

Fig. 4.2 Free nonlinear oscillations 
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4.1.2 Free Motions of Piecewise Linear System 

Capsizing is a transition to oscillation near the upside down equilibrium. It is important, 

then, to have a model that contains several (at least two) stable equilibria. One of the 

simplest models that possesses such a capability is a piecewise linear system. Since we 

will be using this model for further capsizing study, it is worthwhile to show that it has 

the same qualities as a “conventional” nonlinear system. 

The system we are going to use is described by the following differential equation: 

 )sin()(2 2

EEL tf  (4.6) 

The piecewise linear term is responsible for the following equilibria:  
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This function is shown in fig. 4.3: we consider positive dissection because of symmetry 

of the function.

Fig. 4.3 Piecewise linear restoring term 

The system in figure 4.2 has two stable equilibria: at the origin of the coordinate system 

and at  These two stable equilibria are divided by the unstable equilibrium at the angle 

of vanishing stability v.

It is important to note that the system with the piecewise linear restoring term does not 

have any discontinuities: the piecewise linear term is actually a force; hence, it is 

proportional to acceleration. This force is described by a continuous, though, non-smooth 

function. Acceleration is the second derivative of motion, so it is also continuous. 

Discontinuity appears only with its derivative, while the third derivative of motion 

displacement does not have a mechanical sense. 

The solution for such a system consists of many pieces. Each piece is a solution of a 

linear differential equation. The pieces are connected through boundary conditions. When 

the roll angle is expected to cross the boundary between different linear ranges, the final 

conditions at the end of the first range are the initial conditions for the second one.

fL( )

v v

m1 m2m0 m3

Range 1 Range 3Range 2 

Range 0 

*

Range 4 



Chapter 4 112 

Since the boundaries between the different ranges are known, we have the only one 

unknown condition, which is angular velocity. It should be the same at the end of one 

range and at the beginning of the next one. 

Here we consider free motion of a system with a piecewise linear term in order to find its 

backbone curve (period of free oscillations as a function of initial amplitude): 

nicc Fii ...0;0  (4.8) 

The equation (4.8) within the range i is a linear differential equation, its solution is well 

known:

iEiiiiiii tBtAt )exp()exp()( 21  (4.9) 

The term, Ei, is the equilibrium position associated with the range i :
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c
 (4.10) 

Time, ti, is local for range i. It starts from 0 when the system enters the range i. Other 

variables also have a local meaning:  

iii c2,1  (4.11) 

Arbitrary constants: 
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The initial conditions at the boundary of a range are denoted here as ii 00 , .

In order to find a period of free oscillation, we assume that motion starts from initial 

conditions ( a, 0). The initial heel angle, a, is located above the maximum m0, see fig. 

4.3.

The solution (4.9) behaves in different ways depending on the sign of coefficient ci . If it 

is positive (“GZ curve” before maximum), we have the usual linear oscillations. If it is 

above the maximum, it is no longer periodical. In our particular case vm ;0  the 

solution (4.9) can be rewritten as follows [Belenky, 1995a]: 

tkt faVV 1cosh  (4.13) 

Since we know the solution of this range, we can find the time necessary to reach the 

boundary m0 and angular velocity at the time when the system crosses this boundary. 
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As soon the boundary m0 is crossed, the motion will be governed by the conventional 

linear oscillation equation with the well-known solution: 

tkt fa 01 sin  (4.16) 

With amplitude and phase depending on initial conditions at the moment of crossing of 

the boundary m0:
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Since the solution at the second range is known, we can easily find the time necessary to 

reach zero: 
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The sum of times t1 and t2 makes one quarter of the period of free motion [Belenky, 

2000a]:
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 (4.20) 

The backbone curve for the piecewise 

linear system is shown in fig. 4.4: it is not 

smooth, since we have quite distinctive 

boundaries between the ranges. As we shall 

see from further development, the absence 

of a smooth backbone curve does not have 

an affect on the qualitative adequacy of the 

piecewise linear system. It should be noted 

that formula (4.20) is correct only for a 

symmetric piecewise linear term. The 

solution for the general case is available 

from [Belenky, 1999]. 
Fig. 4.4 Backbone curve for piecewise linear system 
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4.2 Steady State of Forced Roll Motions 

4.2.1 Equivalent Linearization 

The next several subchapters are focused on steady states of forced nonlinear oscillations. 

Since there is no analytical solution in a closed form for nonlinear systems available, 

different approximate methods are used. We start from equivalent linearization: the idea 

of this method is to substitute a nonlinear term with a linear one, but still keeping the 

value of the period of free oscillations: 

tf E sin)(2 2  (4.21) 

The linearized system is described as follows: 

tEa sin)(2  (4.22) 

The differential equation (4.22) is formally linear, but one of its terms depends on the 

amplitude of response a. We assume here that the amplitude of steady state response 

can be used for calculation of the natural period by formula (4.3). The steady state 

solution of the equation (4.22) can be expressed as: 

 )sin()( tt a  (4.23) 

Where: 
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Both these formulae include the natural frequency, ( a), that depends on amplitude and 

can be calculated using (4.3): 
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The formula for the phase angle (4.25) includes the amplitude of steady state motions, so 

it has to be calculated first. This amplitude depends on natural frequency that also 

depends on the amplitude. So, to use formula (4.24) it is necessary to express excitation 

frequency via amplitude of the steady state response: 

422
2

2222
)(/2)(2)( aaEaa  (4.27) 

Formula (4.27) describes the response curve, which has two branches, low and high, 

according to sign “+” and “-” in front of the internal square root. Fig. 4.5 shows this 

curve: it can clearly be seen now why the dependence of natural frequency on amplitude 

is called the backbone curve: it holds the response curve. Fig. 4.5 reveals the difference 

between linear and nonlinear response curves: the nonlinear one is bent following the 
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backbone curve (Compare fig. 3.8 and fig. 4.5). As a result, it may have a zone where 

several amplitudes correspond to one excitation frequency. This is a very important 

nonlinear quality and we will return to it in subchapter 4.5. 

Another important feature that is worthwhile to note is limits of the response curve. Its 

lower limit goes to amplitude excitation. If the frequency is very low in comparison with 

the natural frequency, action of the excitation is practically static, there is no dynamic 

amplification and the roll motions just follow the wave. (This is different for roll equation 

(3.274) as there the amplitude of excitation depends on frequency. The response curve for 

the equation (3.274) tends to zero for small frequencies. The formula (4.27) needs to be 

re-written as it does not account that amplitude of excitation depends on frequency, 

however the methodology of derivation does not differ.)

Fig. 4.5 Backbone curve and response curve 

If the backbone bends toward the origin of the co-ordinate system, the case is called a 

“soft” type of nonlinearity. A bend in the opposite direction is called “hard”. A “hard” 

type is partially demonstrated in fig. 4.6, where the response curve for an S-shape GZ

curve is shown (the model for this GZ curve is taken from [Belenky, 2004]). This sample 

contains both types of nonlinearities: “hard” for small roll angles and then “soft” for large 

ones.

Fig. 4.6 Response curve with both “hard” and “soft” type of nonlinearities 
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The same procedure can be applied to a piecewise linear system: the result is shown in 

fig. 4.7. Contrary to a conventional nonlinear system, it is possible to obtain an exact 

solution for a piecewise linear case and an exact response curve can be plotted (see 

subchapter 4.2.6). The curve shown in fig. 4.7 is only an approximation. Its shape, 

however, is very similar to the response curve of the conventional nonlinear system 

shown in fig. 4.5.

Fig. 4.7 Response curve of equivalently linearized piecewise linear system 

4.2.2 Harmonic Balance Method 

The next method to be considered here is called the harmonic balance method. The main 

idea is to search the solution in a form of a truncated Fourier series: 

...)sin()sin()( 222111 tbtbt  (4.28) 

Amplitudes bi and initial phases i should be found by equalization of the terms that 

contain sine or cosine functions with the same frequency. The calculation procedure for 

this method consists of several expansions. The solution of the first expansion is a sine or 

cosine function with the frequency that is equal to the excitation frequency: 

)sin()( 11 tbt  (4.29) 

We consider a nonlinear system with the GZ curve presented with the cubic polynomial: 
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After the substitution of the solution (4.29) into equation (4.30) we shall get: 
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The term with the third power sine function can be expanded: 

)33sin()sin(3
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The term that contains frequency 3 should be truncated in the first expansion: 
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Equation (4.33) can be transformed into a system of two algebraic equations by 

expanding the sine and cosine functions: 
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The term )75.0( 2

13

2 ba  can be considered as natural frequency versus amplitude 

2

1)(b  or the backbone curve and the system (4.34) can be solved: 
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The first expansion of the solution obtained by the harmonic balance method is quite 

similar to one by equivalent linearization. The difference is in the backbone curve. We 

express coefficient a3 via the angle of vanishing stability, this difference becomes clear: 
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The backbone should reach a zero value for natural frequency when the amplitude is 

equal to the angle of vanishing stability (see subchapter 4.1), because the system is placed 

in an unstable equilibrium position and theoretically can stay there for an indefinite time. 

Thus, the period of free oscillations is equal to infinity and frequency is equal to zero 

correspondingly. The formula for the backbone curve (4.37) is not exact; it reaches a zero 

value of frequency when amplitude is equal to v3/2 . This error is caused by the 

truncated terms of the Fourier series. The influence of this error on the response curve is 

not very large: see fig. 4.8. 

Let us consider the second expansion of the harmonic balance method. It is more 

convenient to use exponential representation of harmonic functions for such analyses 

because of the significant size of the formulae.  
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Fig. 4.8 Backbone lines and response curves obtained by equivalent linearization (solid lines) and the 

first expansion of harmonic balance method (dashed lines) 

Using the well-known Euler’s formulae: 
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We obtain: 
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Where bC1 is the complex amplitude of the first expansion solution and CC is the 

complex conjugate value. The complex amplitude is related with real amplitude and 

initial phase angle in the following way: 
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We shall search for the second expansion solution in this form: 
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Following the previously described procedure: 

CCececececect

CCebebt

CCebiebit

tititititi

ti

C

ti

C

ti

C

ti

C

9

9

7

7

5

5

3

31

3

3

3

2

1

2

3

31

)(

9)(

3)(

 (4.42) 

Where 

3

391

2

371

2

33

2

15

3

2

3331

3

13

2

133311

2

11

;3;3

36;23

CCCCCCC

CCCCCCCCCCCCC

bcbbcbbbbc

bbbbbbcbbbbbbbc
 (4.43) 
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All terms that contain frequencies higher than 3  should be truncated. Equalization of 

amplitudes of harmonics with the same frequencies allows building-up of the following 

system of equations: 

029

2

33

2

33

2

3

13

2

11

2

1

cabbib

cabbib

CCC

ECCC
 (4.44) 

This is the system of two nonlinear algebraic equations, i.e. two complex variables bC1

and bC3 and it has to be solved numerically. 

4.2.3 Perturbation Method 

The perturbation method is very popular for analysis of nonlinear systems. Our 

description of this method will be very brief, as comprehensive literature on this subject 

is available: [Bogolubov and Mitropolsky, 1961; Nayfeh, 1973, etc]. This method was 

used for nonlinear roll and ship stability analysis by Wellicome [1975], Cardo, et al

[1981, 1984] and others. 

There are many different versions of the perturbation method. We shall consider the 

simplest example to illustrate the technique. We continue using roll equation (4.30) with 

3
rd

 order power approximation of the restoring term. The solution is represented in the 

form of a series of successively smaller terms: 

 ....3

3

2

2

10  (4.45) 

Where  is a small (bookkeeping) parameter. We also assume that: 

3030 ;; aaEE  (4.46) 

Frequency of response is related with natural frequency as: 

...3

3

2

2

1

22  (4.47) 

Substitution of (4.46) and (4.47) into (4.30) yields: 

ta E sin...2 0

3

303

3

2

2

1

2  (4.48) 

We truncate all the series up to the second power of small parameter . The third order of 

the solution for will look like: 

2

10

2

01

22

01

3

0

3 33  (4.49) 

Then we substitute (4.45) and (4.49) into (4.48) and equalize the right-hand terms and 

left-hand terms with the same power of small parameter 

 0: 0

2

0

0  (4.50) 

3

03001001

2

1

1 2sin: atE  (4.51) 

1

2

030021112

2

2

2 32: a  (4.52) 
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A solution of the first equation (4.50) is trivial: 

 )sin(00 tb  (4.53) 

After the substitution of the solution (4.53) into the second equation (4.51) we get: 

 )33sin(25.0)sin( 30

3

011

2

1 tabtc  (4.54) 

With:  

11

2

1

2

11 /arctan; CSCS ccccc  (4.55) 

cossin2 0001 bbc xES  (4.56) 

sincos2 001 bbc xC  (4.57) 

2

0301 75.0 bax  (4.58) 

The particular solution of equation (4.54) can be expressed as: 

)33sin()cos(5.0 111 tbttc  (4.59) 

The equation (4.59) contains the secular term )cos(5.0 1 ttc , its magnitude 

increases proportionally to time. If a periodic solution is required, the secular term 

should be eliminated. It can be realized if c1= 0. Consequently the following system 

should be satisfied: 

0sincos2

cossin2

00

000

x

Ex

bb

bb
 (4.60) 

It is not difficult to see that 

2222

0
0

2
arctan;

4 xx

Eb  (4.61) 

Taking into account (4.46), (4.47) and (4.58): 

2

030

2

000

22 75.0)(;)(
1

babbx  (4.62) 

Formulae (4.61) can be rewritten: 

22

0
22

2
22

0

0
)(

2
arctan;

4)( bb

b E  (4.63) 

We recognize (b0) as the backbone curve. It can be clearly seen that the first 

expansion of the perturbation method gives the same result as the harmonic balance 

method. The general form of the formulae for amplitude and initial phase angle are 

similar to the results of the equivalent linearization method. A reason for such similarity 

is in assuming a harmonic form in the solution of the steady state oscillation of the 

nonlinear system. 
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The second order expansion can be produced by the same sequence. Formula for 1

(4.59) should be used in formula (4.52) taking into account the condition c1=0 and the 

general form of the second expansion solution 1 can be obtained. Elimination of secular 

terms yields a system of equations relative to the second order amplitude b1 and the 

initial phase angle . The second order solution has a harmonic term with frequency 3 ,

and consequently this expansion is interesting for high order resonance analysis. 

Another important feature regarding the perturbation method is the possibility in 

obtaining the transient motion. This can be done if the amplitude b0 and initial phase 

angle  will be considered as functions of time. A similar procedure will be shown in 

the next section during consideration of the method of multiple scales. 

4.2.4 Method of Multiple Scales 

A method of multiple scales is a version of the perturbation method. A detailed 

description of this method can be found in [Nayfeh, 1973, 1981]. The technique of 

multiple scales is illustrated here using roll equation (4.30) with 3
rd

 power 

approximation of the restoring term. The solution follows Nayfeh and Khdeir [1986, 

1986a].

We consider the frequency domain near the main resonance: 

22  (4.64) 

Variable  is called the tuning parameter  we also use our previous assumption to 

present the coefficients (4.46): 

3030 ;; aaEE

The solution is searched in the following form: 

 ),,(),,(),,( 2102

2

21012100 TTTTTTTTT  (4.65) 

T0, T1 and T2 are different time scales. They correspond to different orders of expansion: 

tTtTtT 2

210 ;;  (4.66) 

Now, instead of one independent variable, time t, we have three. Time derivatives can 

be expressed through partial derivatives by new independent variables: 

...22;... 2

120

2

01

2

02

2

2

2

10 DDDDDD
dt

d
DDD

dt

d
 (4.67) 

With D
T

i

i

 is a partial derivative operator.

After substitution of solution (4.65) into equation (4.30) with taking into account (4.66) 

and (4.67), we shall get a system of differential equations, each of which corresponds to 

a certain power of 

0: 0

2

0

2

0

0 D  (4.68) 
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3

0300001001

2

1

2

0

1 22sin: aDDDtD E  (4.69) 

1

2

0300110

10

2

10101102

2

2

2

0

2

322

222:

aDD

DDDDDD
 (4.70) 

We search for the first expansion solution in the following form: 

CCTiTTA )exp(),( 0210  (4.71) 

Here CC is a complex conjugate term. We assume that amplitude A(T1,T2) is a function 

of time scales of the first and the second order. This assumption is natural: amplitude 

changes slower than the process itself. The same assumption lies in the background of 

averaging or the van-der-Poul method, where amplitude is also considered as a slow 

function of time in comparison with the oscillation process itself, [Andronov, et al

1966]. The system of equations for the method of multiple scales (4.68-4.70) has the 

same principle structure as the system of equations for the perturbation method (4.50-

4.52). So, secular terms should also be present in the formula for the second order 

expansion amplitude and the first order amplitude can be obtained through elimination 

of the secular terms. Substitution of (4.71) in (4.69) yields: 

CCTiAa

TiAAaAAiADi

D

E

)3exp(

)exp(3225.0

0

3

30

0

2

3010

1

2

1

2

0

 (4.72) 

It is enough for elimination of secular terms to require: 

03225.0 2

3010 AAaAAiADiE  (4.73) 

It is a differential equation, i.e. A(T1), because amplitude A is a function of T1 only for 

the first expansion solution. The following form is proposed for solution of the 

differential equation (4.73): 

)](exp[)(
2

1
)( 111 TiTcTA  (4.74) 

Substitution of (4.74) in (4.73) and separation of the real and imagined part gives the 

following system of differential equations: 

cos
28

3

2

sin
2

03

30

1

0

1

E

E

ca
c

dT

d
c

c
dT

dc

 (4.75) 

This is the system of two nonlinear differential equations. It can be solved numerically. 

Functions c(T1) and (T1) are the result of such a solution. Knowledge of these functions 

allows the transient solution of the first expansion to be built. Initial conditions of roll 

equation (4.30) )0(t  and ( )t 0  are related with the initial condition of the system 

(4.75) in the following way: 
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CCTDDt

CCtiTiTct

)0()0(

)exp()]0(exp[)0(5.0)0(

110

11
 (4.76) 

If a steady state solution is required, then derivatives of c and  should be equal to zero; 

this condition transforms the system of nonlinear differential equations (4.75) into the 

following system of nonlinear algebraic equations: 

0cos
28

3

2

0sin
2

03

30

0

E

E

ca
c

c

 (4.77) 

The system (4.77) can be resolved with use of formula (4.64). When it is substituted in 

(4.77) a “backbone” term is revealed: 

0cos
22

0sin
2

022

0

E
x

E

c

c

 (4.78) 

With: 

2

30

2 75.0 cax  (4.79) 

The solution of the system (4.78) can be expressed as: 

22
22222

2
arctan;

4 x
x

Ec  (4.80) 

We end up with the same solution that was obtained by the first expansion of the 

harmonic balance method and perturbation method. It is logical because we have used 

harmonic approximation for the first expansion near the principal resonance in all the 

described methods. 

Following Nayfeh and Khdeir [1986, 1986a], we continue with the second expansion of 

the method of multiple scales. The solution is supposed to be: 

2

30
0

3

1
8

1
with3exp

a
kCCTikA  (4.81) 

Substitution of this formula into the third expansion equation (4.70) yields:  

CCTiAkAaTiAAa

TikAaTiAD

TiikATikA

TiADTiADi

TiDAiD

0

23

300

4

30

0

5

3001

0

3

0

3

0

2

102

01

2

2

2

2

2

0

exp33exp6

)5exp(3)exp(2

)3exp(32)3exp(

)exp()exp(2

)3exp(18

 (4.82) 
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Elimination of secular terms in the third expansion solution gives an equation for 

amplitude of the second expansion: 

0322 32

301

2

12 CCAAkaADADADi  (4.83) 

Here, amplitude A should be considered as a function of both scales T1 and T2.

Derivative D1A can be taken from the first expansion solution (4.73). It can be expressed 

as:

CCAAaAi
i

AD E0

2

301 5.032
2

1
 (4.84) 

The second derivative AD2

1  can be found from (4.84): 

CCAA
a

AA
iaa

AA
a

A
a

A
ii

AD

EE

EE

23

2

2

30230

2
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3002

2

300

20

2

2

0

2

0

2
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1

4
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3

8

3

8

3

448

 (4.85) 

Substitution of (4.84) and (4.85) into (4.83) yields an equation for D2A. Combining it 

with equation (4.84), we get a system of differential equations, i.e. A(T1,T2): 

2
322

4

153

2

3

8

3

8

3

448
2

02

301

22

2

2

30230

2

030
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2
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EEE
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a

A
a

A
i

ADi

 (4.86) 

For the second expansion, the following form of A(T1 ,T2) is expected: 

)],(exp[),(
2

1
)( 21211 TTiTTcTA  (4.87) 

Using the full derivative operator (4.67), we can transform the system (4.86) into one 

equation in full derivatives: 

2

2

10 T

A

T

A

T

A

dt

dA
 (4.88) 

It is clear that: 

0
0T

A
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After separation of the real and imaginary parts of (4.88), we get a system of differential 

equations: 

cos
32

3

8
sin

4

256

15

16
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 (4.89) 

If the steady state solution is required then, 0c , 0  and the system of differential 

equations (4.89) becomes the system of nonlinear algebraic equations: 
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 (4.90) 

The bookkeeping parameter, , is assumed as a unit here. A final solution after the 

second expansion is: 

)33cos(
8

)cos()( 3

2

3 tc
a

tct  (4.91) 

4.2.5 Numerical Method 

Let us consider numerical methods for the solution of the nonlinear roll equation. These 

methods are fast and reliable, also they put much less restrictions on the model. We do 

not need any approximations for the GZ curve or damping term. We can include other 

degrees of freedom as well. Nowadays, numerical methods have become the main tool 

for research and design, while all other methods play an auxiliary role, helping to 

understand and interpret the results of the numerical solution. 



Chapter 4 126 

Numerical methods are intended to solve differential equations and systems of 

differential equations of the first order. At the same time, all motion equations have 

second order derivatives, so they have to be transformed to the system of the first order 

equations.

Consider, for example, a general nonlinear roll equation such as equation (3.270) from 

chapter 3: 

EE tf sin)(2 2  (4.92) 

Let’s introduce a new function: 

;  (4.93) 

Its substitution into the original equation (4.92) allows its consideration as a system of 

differential equations of the first order: 

)(2)sin( 2 ft EE
 (4.94) 

It is convenient to present system (4.94) in vector form: 

 ),( tYFY  (4.95) 

)(2)sin(

)(2)sin(
),(

;;
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1

2

2

1

2

1

2

1

ft

Y

YfYt
tYF

Y

Y
Y

Y

Y
Y

EE

EE
 (4.96) 

For the sake of simplicity, let us consider first one differential equation of the first order.  

 ),( tyFy  (4.97) 

Suppose, we need to know the solution of the equation at the interval from 0 to T with 

step t. The initial condition is: 

0)0( yty  (4.98) 

The simplest (but not the best) way to get the solution is the Euler method that is 

implemented in the following calculating scheme [Bronshtein and Semendyayev, 1997]: 

...

;),(;

....

;),(;1

;),(;0

1

1121111

0010000

iiiiiii ytyytyFytit

ytyytyFytt

ytyytyFytt

 (4.99) 
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The calculating scheme of the Euler 

method can be easily interpreted 

graphically, see fig. 4.9. It has to be noted 

that the time step does not have to be 

constant. It just has to be small enough to 

provide the desired accuracy.  

Although we are not discussing problems 

of accuracy and errors here, the Euler 

method is not optimal from the point of 

view of accuracy [Bronshtein and 

Semendyayev, 1997]. The Runge-Kutta 

method is one of the most popular ways 

for a numerical solution of differential 

equations. It can be considered as generalization of the Euler method: the difference is 

that function F(y,t) is substituted by the more general expression ),(
~

tyF :

),(),(2),(2),(
6

1
),(

~
4321 tyktyktyktyktyF  (4.100) 

With: 

tttyktyFtyk

tttyktyFtyk

tttyktyFtyk

tyFtyk

,),(),(

5.0,),(5.0),(

5.0,),(5.0),(
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34
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12

1

 (4.101) 

The calculation scheme is the same as that in the Euler method: 

....

;),(
~

;

....

;),(
~

;0

1

0010000

iiiiiii ytyytyFytit

ytyytyFytt

 (4.102) 

Now, let us return to the roll equation in vector form (4.95). All the operations in both 

methods can be applied to vectors, so the generalization of formulae (4.100)-(4.102) is 

straightforward:

....

;),(
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;

....

;),(
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1

0010000

iiiiiii YtYYtYFYtit
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 (4.103) 

With: 
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6

1
),(

~
4321 tYKtYKtYKtYKtYF  (4.104) 

Fig. 4.9 Graphical interpretation of the Euler 

method
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Where: 

tttYKtYFtYK

tttYKtYFtYK

tttYKtYFtYK

tYFtYK

,),(),(

5.0,),(5.0),(

5.0,),(5.0),(

),(),(

34

23

12

1

 (4.105) 

Formulae (4.103)-(4.104) complete the calculation scheme for the nonlinear roll 

equation. It is important to note that there is no limit on the dimensions of vector Y  and 

vector valued function ),( tYF , so other degrees of freedom may be easily included if 

necessary.

4.2.6 Steady State Solution of Piecewise Linear System 

We complete our study of the methods for steady state solutions by demonstration that 

an exact solution is available for a piecewise linear system. Despite the fact that a 

piecewise linear system consists of two linear solutions, its synchronization behavior (or 

behavior while reaching steady state) is rather nonlinear. We mean that there is no clear 

definition when the piecewise linear system reaches a steady state mode since 

oscillation with the natural frequency is generated each time the boundary between 

linear ranges is crossed.

Let us consider the general solution of a piecewise linear system. We consider further 

the case with a symmetric restoring term. General formulae are available from [Belenky, 

1999], however they are quite complex. So the forced piecewise linear system is 

described by the following differential equation: 

)sin()(2 2

EEL tf  (4.106) 

The piecewise linear term is expressed by formula (4.7) and shown in fig.4.3: 

101

00000

;)sin(

;)sin()sin(
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tpBeAe
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 (4.107) 

With: 

Amplitudes and phases of particular solutions: 
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Additional phase angles 0 and 1 are necessary to keep continues time for the whole 

solution (time t is assumed to be local for each range). 

Arbitrary constants for 00 ; mm :

2

00

2

0

2

0000

0

0

1
qqqa  (4.110) 

0000

000
0 arctan

qq

q
 (4.111) 

With: 

2

0

2

0 fk  (4.112) 

Variables 00 , are initial conditions, when t = 0. 

Variables 00 , qq are values of the particular solution and its derivative, when t = 0. 

Arbitrary constants for 10 ; mm :

21

11111

21

11211 ;
pp

B
pp

A  (4.113) 

With: 

2

1

2

2,1 fk  (4.114) 

Variables 11,  are initial conditions on the border of the range No. 1, when t = 0. 

Variables 11, pp  are values of particular solution on the border of the range No. 1, when 

t=0.

The only difference between transition and steady state regimes are values of crossing 

velocities and periods of time spent in different ranges of the piecewise linear term. So, if 

we find such figures that provide a periodic solution with excitation frequency, the steady 

state problem will be solved. These conditions can be formalized as a system of 

simultaneous algebraic equations. If we look at an unbiased case, it is enough to consider 

just half of the period [Belenky, 2000a]: 

1
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00000
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TTf

TTf

Tf

Tf

m

m

 (4.115) 

Here, functions f0 and f1 are solutions for (4.106) at the first and second ranges expressed 

explicitly through the only unknown initial condition – angular velocity at the boundary 

crossing, see also fig.4.10: 
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Fig. 4.10 Steady state motion of piecewise linear system 

)sin()(sin)(),,( 000000000 qa

t

a tqteTf  (4.116) 

Vpa

tt tpeBeATf )sin()()(),,( 1111111
21  (4.117) 

The system (4.115) can be solved relative to unknown values T0, T1, ,0 1 , and 0 using

any appropriate numerical method. The results of the equivalent linearization are used 

for calculation of initial values of the unknown values, which makes calculations more 

fast and simple. 

The resulting response curve is shown in fig. 4.11. As it could be seen from this figure, 

it has a quite conventional form, including the area, where three amplitudes correspond 

to one excitation frequency. We call this steady state solution exact, despite the 

numerical method was used to calculate crossing characteristics. Accuracy is still 

controllable: we always can substitute these figures into system (4.115) and check how 

the solution turns equations into equalities.  

Fig 4.11 Response curve of exact solution for steady state motions of the piecewise linear system, 

dashed curve is equivalently linearized response 
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4.3 Stability of Equilibrium 

4.3.1 Identification of Equilibria 

We already defined stable, unstable and indifferent equilibria in subchapter 8.3 of 

[Kobylinski and Kastner 2003]. That definition was based on physics. Further, we will 

need a more formal description of stable and unstable equilibria. We also are going to 

introduce several mathematical concepts that will be used in the following chapters. At 

the same time, again, all these figures are just a more formal way to express the same 

physical contents. 

Consider the nonlinear roll equation in general form (4.21): 

tf E sin)(2 2

Suppose that the GZ curve presented here by function f( ) has three intersections with 

axes, see fig. 4.12.  

Fig 4.12 Equilibria in roll equation and linearization at vicinity of equilibria 

We know that these intersections correspond to three equilibria:  

Stable “normal” equilibrium, 

Unstable equilibrium at angle of vanishing stability, 

Stable “upside down” equilibrium.  

We show how this information can be formally deduced from equation (4.21). This 

procedure will not produce any new physical knowledge, but could be used as an 

intuitively clear example of a universal procedure that can be (and will be) applied in 

more complicated cases. 

First of all, we delete excitation: it cannot influence the position of equilibria, since it 

does not depend on roll angle: 

 0)(2 2 f  (4.118) 

Then we rewrite (4.118) in vector form: 

f( )

v

Linearization at upright equilibrium  

Linearization at angle of vanishing stability 

Linearization capsized equilibrium 
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 )(YFY  (4.119) 

With: 
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 (4.120) 

If the system gets into an equilibrium position, it can stay there for an unlimited time (if 

not disturbed). So there is no motion and, hence, derivatives must be zero: 

0)(;0 YFY  (4.121) 

This is equivalent to the system: 

0

0)(2 2 f
 (4.122) 

Which immediately degenerates to one equation: 

 0)(f  (4.123) 

Equation (4.123) expresses exactly the same what was mentioned above: equilibrium 

positions are located at intersections of the GZ curve with the axes of roll angles. There 

are three of them (in positive direction of roll angles): “normal” or “mast up”, angle of 

vanishing stability and capsized or “mast down”, see fig. 4.12. 

As soon as the equilibrium positions are determined, we can evaluate if they are stable 

or not. To do that, we put the system exactly into an equilibrium position and then give 

it a small perturbation. If the system returns back, the equilibrium is stable, if not, then 

this equilibrium is unstable. Since perturbation is meant to be small, nonlinearity of the 

system cannot be significant and the system (4.118) can be linearized. The linearization

has to be done in the vicinity of the corresponding equilibrium position, see fig. 4.12. 

4.3.2 Original or “Normal” Equilibrium 

Let us look at the “normal” equilibrium first. The linearized system looks like: 

0)(
)(

2
0

2 b
d

df
 (4.124) 

Here, b is a free term that is equal to the heel angle at equilibrium. For equilibrium at 

0 , it leads to: 

 02 2  (4.125) 

The reader is most probably quite familiar with the solution of the equation (4.125). 

However, it is worthwhile to review it because some intermediate values have crucial 

importance for stability. Let us search the solution in the form: 
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 )exp( t  (4.126) 

Let us find its derivatives and substitute all of them into the original equation: 

0)exp()exp(2)exp( 22 ttt  (4.127) 

Both sides of formula (4.127) can be divided by )exp( t  and we obtain the following 

algebraic equation: 

02 22
 (4.128) 

This equation relates the exponential index, , with coefficients of the differential 

equation (4.125). It is called the “characteristic” equation and its solutions are called 

“eigenvalues” (“eigen” is a German word for “own”). The equation (4.128) is quadratic 

and its solutions are: 

22

2,1 D  (4.129) 

Since we have two eigenvalues (solutions of the characteristic equation) we have two 

independent solutions of the differential equation: 

)exp();exp( 2211 tt  (4.130) 

These two solutions span the space of all solutions. It means, that any other function that 

turns equation (4.125) into a true equality can be linearly expressed through these two 

functions (4.130): 

)exp()exp( 22111 tCtC  (4.131) 

Where coefficients (arbitrary constants) C1 and C2 are to be determined through initial 

conditions.

Our goal is the determination of stability of equilibrium, so we would like to know 

where the system does go if displaced. Analysis of the behavior of function (4.131) 

yields the answer: if it takes the system back or pulls it away from the equilibrium. This 

behavior is evidently dependent on the eigenvalues (4.129); they also may be complex. 

Usually, the numerical value of damping, , is less than the natural frequency , so the 

eigenvalues are complex for roll equation at the original equilibrium “mast up”: 

te

tiCtiCt

tiCtiC

tCtC

tCtCt

t

A

22

22

2

22

1

22

2

22

1

22

2

22

1

2211

sin

expexp)exp(

expexp

expexp

)exp()exp()(

 (4.132) 

Where A and  are a new form of arbitrary constants determined by initial conditions: 
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2

12

2

2

1 arctan;
C

C
CCA  (4.133) 

Formula (4.132) describes a dying oscillation, which will return the system back to 

equilibrium after infinite time (see fig. 4.13): 

0sinlim)(lim 22 tet t

A
tt

 (4.134) 

That means that the equilibrium is stable: being displaced, the system returns back (the 

fact that it takes infinite time is usually expressed in the term “asymptotically stable”).  

Fig 4.13 Asymptotically stable upright equilibrium 

4.3.3 Equilibrium at Angle of Vanishing Stability 

Let’s use the above technique to analyze the equilibrium at the angle of vanishing 

stability. The linearized system looks like: 

0)(
)(

2 2 b
d

df

v

 (4.135) 

Here b is a free term that equals the heel angle at equilibrium. For equilibrium at v ,

the derivative of the restoring term gives: 

1

)(
k

d

df

v

 (4.136) 

The linearized differential equation of roll is:  

 02 1

2

1

2

vkk  (4.137) 

It is almost the same as in the first case of “normal” or “mast up” equilibrium (equation 

4.125); the difference is the negative restoring term and the presence of a constant. We 

search for the solution in the following form: 

0)exp( Ct  (4.138) 

Substitution of the prospective solution (4.138) into the equation (4.137) leads to the 

following formula: 
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0)exp()exp(2)exp( 1

2

01

2

1

22

vkCktktt  (4.139) 

The equation (4.139) contains both constant and time dependent terms. In order to 

satisfy this equation, sums of both types of terms have to be equal to zero 

independently:

0

0)exp()exp(2)exp(

1

2

01

2

1

22

vkCk

tktt
 (4.140) 

The second equation yields a value for the constant C0:

vC0  (4.141) 

The first equation yields the characteristic equation: 

02 1

22 k  (4.142) 

Eigenvalues are: 

1

22

2,1 kD  (4.143) 

We see here a very important change: under no circumstances is the discriminate 

negative, so the eigenvalues are always real. Then any solution of the equation (4.137) is 

of the form: 

vtCtCt )exp()exp()( 2211  (4.144) 

With arbitrary constants C1 and C2 to be determined from initial conditions. 

It is very important to note that one of the eigenvalues is always positive and the other 

one is always negative. Since one of the eigenvalues is positive, the solution is not 

bounded and it always tends to infinity in the positive or negative direction, depending 

on whether the sign of C1 if 1 is positive: 

v
tt

tCtCt )exp()exp(lim)(lim 2211  (4.145) 

That means, that the equilibrium in not stable; being displaced, the system never returns 

back, see fig. 4.14. 

Fig. 4.14 Unstable equilibrium at angle of vanishing stability 
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4.3.4 Equilibrium at Capsized Position 

The last equilibrium we are going to analyze, is capsized or “mast down” position. The 

sequence of the derivation is the same as that in the previous two cases: 

0)(
)(

2 2 b
d

df
 (4.146) 

Here b is a free term that is equal to the heel angle at equilibrium. For equilibrium at 

, the derivative of the restoring term gives: 

2

)(
k

d

df
 (4.147) 

The linearized differential equation of roll is:  

 02 2

2

2

2

vkk  (4.148) 

The equation (4.148) is similar to both previous cases: it has a positive restoring term as 

in (4.125) and a constant as in (4.137). Following the same procedure, we can write a 

solution as: 

)exp()exp()( 2211 tCtCt  (4.149) 

With the eigenvalues: 

2

22

2,1 kD  (4.150) 

Formally, eigenvalues are going to be complex here, if we are not taking into account 

changing of damping in the capsized position. Let us consider the case with unchanged 

damping first: the solution is dying oscillation (analogous to equation (4.132)): 

tet t

A

22sin)(  (4.151) 

and

tet t

A
tt

22sinlim)(lim  (4.152) 

The equilibrium is stable, since the system being displaced returns back to the 

equilibrium, see fig. 4.15. 

Fig. 4.15 Asymptotically stable equilibrium at capsized position 
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If we take into account a changing damping coefficient in the capsized position, the 

eigenvalues may be complex or real. They are real if the damping is very high (larger 

than critical damping): 2k . Let us consider this more closely. The solution also 

has an exponential form as in the case with equilibrium at vanishing stability, but both 

eigenvalues are negative. Really, for any positive damping coefficient .

0if 2,12

22

2 kk  (4.153) 

Since eigenvalues are negative, the solution is bounded, and the system returns back to 

the equilibrium: 

)exp()exp(lim)(lim 2211 tCtCt
tt

 (4.154) 

Again, the equilibrium is stable disregarding the damping coefficient value. 

All of the above analyses are convenient to present in the form of a table: (see table 4.1) 

Table 4.1 Summary of equilibria and their stability 

Equilibrium Eigenvalues Presence of positive real 

eigenvalue or positive 

real part of complex 

eigenvalue

Stable or 

unstable

“Normal” or 

“Mast-up”

Complex No Stable 

Angle of 

vanishing

stability

Real Yes Unstable 

Complex No Stable Capsized or 

“Mast-down”
Real No Stable 

Finally, the formal indicator of stability or instability of equilibrium is the presence of a 

positive real eigenvalue or positive real part of a complex eigenvalue. 

4.3.5 Phase Plane in Vicinity of Equilibria 

In the previous subchapter we have used time history to show how the solution behaves. 

However, the time history does not show the entire picture, since the dynamic state of 

the system without forcing at any moment of time is fully characterized by two values: 

displacement and its derivative, or roll angle and angular velocity. There is a way to 

show both these values in one plot: to choose them to be co-ordinate axes. It is called 

the phase plane. 

Every moment of time is mapped on the phase plane with a particular roll angle and 

angular velocity. Motion of the system leaves a trace on the phase plane that is called 
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“phase trajectory”. The entire set of phase trajectories is called the “phase picture” or 

“phase portrait”. 

If the solution is known, building the phase picture is easy; let us take the solution 

(4.132) as an example: 

tetet

tet

t

A

t

A

t

A

222222

22

sincos)(

sin)(
 (4.155) 

Assuming particular initial conditions and using time as a parameter, we obtain two 

columns of numbers corresponding to the roll angle and angular velocity. This is the 

phase trajectory. Then, we change initial conditions and repeat the procedure. The 

resulting phase picture is shown in fig. 4.16. 

Equilibrium is presented by a point with zero 

angular speed; the phase picture consists of a 

number of spirals. Direction of movement 

along these spirals clearly indicates stability 

of the equilibrium. The phase picture on fig. 

4.16 is supplemented by a graph showing the 

position of the eigenvalues on the complex 

plane. Usually phase pictures have names, 

this one is called “stable focus”. 

The other two cases considered in the above 

subchapter: angle of vanishing stability and 

position “mast down” with large damping 

are shown in figures 4.17 and 4.18 

correspondingly. (Position “mast down” with 

small damping is not much different from 

the one shown on fig. 4.16). These phase pictures are called “saddle” (fig.4.17) and 

“stable node” (fig. 4.18). 

Fig. 4.17 Saddle Fig. 4.18 Stable node 

Fig. 4.16 Phase picture at upright 

equilibrium position: stable focus 
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These phase pictures can be encountered while studying the roll equation. To complete 

this consideration, we show a complete list of all possible phase pictures along with its 

names and characteristic positions of eigenvalues on the complex plane. Since a linear 

dynamic system describing roll contains only two coefficients: natural frequency and 

damping, every possible phase picture is associated with a pair of these coefficients, see 

fig.4.19.
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Fig. 4.19 Phase pictures of linear system along with eigenvalues  
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4.4 Stability of Roll Motion 

Steady state periodic motion or limit cycle (an alternative term) is similar to equilibrium 

in a certain sense. Once the system achieves either of these states, it holds there for an 

indefinite time if not perturbed. We have seen already what happens, if the system is 

disturbed from equilibrium: if it is stable, the system will sooner or later return there. If 

the equilibrium is unstable, the system “tries” to find a stable state. The same applies to 

steady state regimes of motions. They may be either stable or unstable. If steady state 

periodic motion is stable, a small perturbation of its motion would not lead to drastic 

changes: the system would return to the original regime after a finite or infinite time. 

(The last case defines “asymptotic” stability – similarity with stability of equilibria holds 

completely). 

This subchapter is focused on different methods for studying motion stability of roll in 

beam seas. 

4.4.1 Lyapunov Direct Method  

We begin our consideration from a very brief review of the direct Lyapunov method. At 

the end of the 19th century, Lyapunov [1954] applied the method for the motion of a 

rigid body floating in fluid. 

What do we mean when we are speaking about motion stability? Let us imagine steady 

state motion of some dynamic system that is describing ship roll. We apply some small 

perturbation to the system and observe its behavior. If the response (difference between 

perturbed and non-perturbed motions) is also small, and the system returns to its initial 

regime after a finite or even infinite time, we recognize this steady state regime as stable, 

(if return to initial regime requires infinite time, the regime is called asymptotic stable). If 

the response of the system to the small perturbation is not small and the system reaches 

some other regime of motion, such a steady state regime should be recognized as 

unstable. An unstable steady state regime cannot exist in physical system during a long 

time, analogously to unstable equilibrium. 

To make judgments about stability, we need an auxiliary function that is called the 

‘Lyapunov function’. This function should be defined in phase coordinates. If we 

consider a dynamic system with one degree of freedom, the Lyapunov function depends 

on roll angle and roll velocity: F( , ) . It will look like the surface in fig. 4.20. 

Let us intersect this surface by some plane constF . A trace of this intersection is the 

boundary of stability. If the phase trajectory of perturbed motion crosses this boundary 

only in the inward direction, such a motion is recognized as stable. In other words, a 

substantial derivative of the Lyapunov function that is calculated along the phase 

trajectory should be negative all the time.  

Such usage of the Lyapunov function forces us to stipulate that F( , )  should be a 

positive definite function. The condition of positive definite is the following: 

0),(and0)0,0( FF  (4.156) 



Nonlinear Roll Motion in Regular Beam Seas 141 

Now, we can give the formulation of 

the Lyapunov stability theorem that is 

essential in the Lyapunov direct 

method (English formulation is taken 

from Kuo and Odabasi [1975]): “If the 

differential equations of perturbed 

motion are such that it is possible to 

find a positive definite function 

F( , )  for which the substantial 

derivative, taken along the motion 

trajectory is negative definite, then the 

non-perturbed motion is stable”. 

Negative definite function should be 

understood analogously with the 

positive definite one. So, we have two 

conditions of stability: 

0
)0,0(

and0
),(

dt

dFFF

t

F

dt

dF
 (4.157) 

To provide an example of this procedure, we consider an example taken from Kuo and 

Odabasi [1975]: a nonlinear roll equation with a cubic restoring term: 

 02 3

3

2 a  (4.158) 

The Lyapunov function is taken in the following form: 

)(
2

1
),( 222F  (4.159) 

It is clear that function (4.162) is positive definite, and its substantial derivative is: 

2

3

3

3

222 2)2( aa
dt

dF
 (4.160) 

To provide a negative definite of the substantial derivative of Lyapunov function, we 

should require: 

dF

dt
a3

22 0  (4.161) 

Roll motion stability analysis where the direct Lyapunov method was used can be found 

in Martin, et al [1982], Phillips [1986, 1986a], Caldeira-Saraiva [1986, 1986a]. This 

approach to roll motion stability analysis mainly encounters the problem of finding the 

Lyapunov function. 

4.4.2 Floquett Theory 

We continue our consideration of roll equation (4.158) including harmonic excitation 

[Stoker, 1950, Wellicome, 1975]: 

ta E sin2 3

3

2  (4.162) 

),(
.

F

Fig. 4.20 Appearance of Lyapunov function 

.
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To study stability of the steady state solution, we introduce some small perturbation (t):

 )()()(
~

ttt  (4.163) 

and substitute (4.163) in (4.162): 

ta E sin
~~~

2
~ 3

3

2  (4.164) 

or

ta E sin)()()(2)( 3

3

2  (4.165) 

Taking into account that (t) is a steady state solution of differential equation (4.162) and 

its substitution into the equation transforms it into a true equality, we get an equation 

relative to the small perturbation (t). Such an equation is called the “variation equation”. 

After high powers of small quantity (t) are dropped, the variation equation looks like: 

 0)3(2 2

3

2 a  (4.166) 

Expression (4.166) is an ordinary linear differential equation of the second order with a 

time varying coefficient; (t) is the steady state solution, so it should be periodical 

because of harmonic excitation, so equation (4.166) has a periodical coefficient.  

The general solution of (4.166) can be expressed as: 

( ) ( ) ( )t c t c t1 1 2 2  (4.167) 

Here, c1,2  are arbitrary constants and 1,2  are linear independent solutions. There are two 

of them, since the differential equation (4.166) is of the second order. Linear 

independence of the solutions 1,2 means that they cannot be expressed one through 

another using linear operations (such as the sine function cannot be expressed through the 

cosine function of the same argument with linear operation only). These solutions are 

also called “fundamental” and the following determinant never equals zero: 

0
)()(

)()(
det)(

21

21

tt

tt
tW  (4.168) 

Such a determinant has a special name. It is called the “Wronsky determinant”.  

As we have mentioned, the equation (4.166) contains the periodic coefficient 

( )2

3

23a  with period T. (If we are using harmonic approximation for the steady state 

solution, the period is equal to double the excitation period, because of the second 

power.) The periodicity of the coefficient is very important, because it makes 1(t+T) and 

2(t+T) fundamental solutions if 1(t) and 2(t) are fundamental ones as well, [Stoker, 

1950]. At the same time 1(t+T) and 2(t+T) are solutions of differential equation (4.166) 

and can be expressed via a linear combination of fundamental solutions at the time t:

)()()(

)()()(

2221212

2121111

tbtbTt

tbtbTt
 (4.169) 

The Wronsky determinant of 1(t+T) and 2 (t+T) can be obtained from (4.169): 
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W t T
b b

b b
W t( ) det ( )

11 12

21 22

, (4.170) 

Since 1(t+T) and 2(t+T) are also fundamental solutions:  

det
b b

b b

11 12

21 22

0  (4.171) 

Here is the essence of the Floquett theory: the solution, we search for is not necessarily 

periodic; it changes after a period by a constant:

 Const;)()( tTt  (4.172) 

If the constant  is more than one, the solution of variation equation (4.166) increases, the 

difference between the original and perturbed process becomes larger and our process is 

clearly unstable. 

The solution (4.172) as any other can be expressed via fundamental solutions in 

accordance with formulae (4.167) and (4.169):  

( ) ( ) ( )

[ ( ) ( )] [ ( ) ( )]

t T c t T c t T

c b t b t c b t b t

1 1 2 2

1 11 1 12 2 2 21 1 22 2

 (4.173) 

Using formulae (4.172) and (4.167): 

( ) ( ) ( )t T c t c t1 1 2 2  (4.174) 

Equalizing (4.173) and (4.174) we can get an equation relatively :

[ ( ) ] ( ) [ ( )] ( )c b c b t c b c b t1 11 2 12 1 1 21 2 22 2 0 ; (4.175) 

Let’s transform it into the system of linear equations using the linear independence of 

1(t) and 2(t):

c b c b

c b c b

1 11 2 12

1 21 2 22

0

0

( )

( )
 (4.176) 

Adding the equations we shall get:

( )[( )( ) ]c c b b b b1 2 11 22 12 21 0  (4.177) 

and

( )( )b b b b11 22 12 21 0  (4.178) 

Analogously to linear differential equations, expression (4.178) is called the 

“characteristic equation” and its roots are known as “eigenvalues”.

A matter of particular interest is the case when 1 2 1, . If  1 1 , the solution will 

have the period T, or the same period that periodic coefficient ( )2

3

23a has. For 

2 1, the period of solution equals 2T. Really: 
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2 2

2

2 22 1 1( ) ( ) ( ) ( ) ( )t T t T t t  (4.179) 

Following Nayfeh [1986a, 1990], here we solve the variation equation numerically by the 

Runge-Kutta method. To receive a pair of fundamental solutions, we set up initial 

conditions ( )t 0 1, ( )t 0 0 for the first solution and ( )t 0 0, ( )t 0 1 for 

the second one. The solution and its derivatives are shown in fig. 4.21 and 4.22. 

Fig. 4.21 First fundamental solution of variation equation ( = 1.05) 

Fig. 4.22 Second fundamental solution of variation equation ( = 1.05) 

Using formula (4.170) for solution after time t=T passes: 

)0()0()(

)0()0()(

2221212

2121111

tbtbT

tbtbT
 (4.180) 

We can write: 

b T b T

b T b T

11 1 12 1

21 2 22 2

( ) ( )

( ) ( )
 (4.181) 

Eigenvalues of the differential equation (4.166) are the same as the eigenvalues of matrix 

bi,j.  The eigenvalues can be found from the following quadratic equation: 

 0][)( 211222112211

2 bbbbbb  (4.182) 
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Coefficients of this equation have special names or nominations, see Thompson [1986]: 

Trace:

2211 bbTr  (4.183) 

Determinant: 

 )det(21122211 ijbbbbbDt  (4.184) 

The eigenvalues can be expressed as: 

DtTrTr 45.0 2

2,1  (4.185) 

We already mentioned that our process is stable if both eigenvalues are less than one. 

However eigenvalues (4.185) may be complex. To generalize stability conditions we 

require that an absolute value of both eigenvalues should be less then unity, or the 

eigenvalues must stay in the unit circle in a complex plane. These eigenvalues are the 

main result of the motion stability study at this stage. Subchapter 4.5 shows how they are 

used and what information may be extracted from their evaluation. 

4.4.3 Poincare Map and Numerical Method for Motion Stability 

This subchapter is focused on a description of a numerical approach to motion stability.  

Its main advantage is no limitations for nonlinear terms: they can even be defined 

numerically. Also, no limitations for degrees of freedom are imposed. 

First, we introduce the concept of the Poincare map. It is a very convenient tool to work 

with periodic forced motions, because it allows visualizing complex transition processes. 

The idea is to keep just one point of phase trajectory per expected period of motion (it is 

usually period of exciting force). Then, instead of a messy phase picture of transition, we 

get a series of points that clearly indicate the tendency, see figure 4.23. The steady state 

periodic regime is shown by just one point. 

Now, let’s return to the problem of motion stability. Since it is meant to get a solution 

numerically, our dynamic system describing roll (coupled with other ship motions, if 

necessary) is presented in the vector form (4.95):  

),( tYFY

Assume we know initial conditions corresponding to the steady state solution (or limit 

cycle), which is also called the “fixed point”, because it looks like a point on the Poincare 

map. Where might we obtain these initial conditions? One of the possible answers – from 

the approximate solution received by any method described in subchapter 4.2. Another 

option is “Global analysis”. It is when we subdivide the entire phase plane with a mesh 

and then check all the initial conditions defined by nodes of this mesh. Those nodes are 

the ones who lead to the solution that repeats itself after a given period are ones we are 

looking for. We will return to this method later in Chapter 6. 

Another possible question here is: do we need motion stability analysis for a numerical 

solution at all? It might seem unnecessary, since we can track the process itself and see if 

the system can keep this particular steady state regime for a while. In fact, the stability 
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analysis is still necessary. One reason is that instability may not be very strong and the 

development of a significant deviation may take a long time. A stability analysis shows 

the “fate” of the regime within one period. Also, we really need to know where the 

system goes if this regime is unstable. This is discussed in subchapter 4.5, but to be 

prepared for it we need to know a value of certain criterion, like eigenvalues such as in 

the Floquett theory described in the previous subchapter 4.4.2. 

Fig. 4.23 On Poincare map definition  

Let’s introduce a small perturbation by steady state solution (also known as a “limit 

cycle” and “fixed point”) to the system (4.95) at the moment 0tt , when initial 

conditions were SYY . As a result, after the perturbation was applied, the system state 

becomes: 

00
0

S
tt

YYY  (4.186) 

 ),(),( 00000 tYFtYFY s  (4.187) 
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Here 01 is a small perturbation by roll angle and 02 is a small perturbation by angular 

velocity at the moment t0 when they were introduced. (One of them may be zero). After 

period T, the system status is described as: 

 ),( 011 TtYFY  (4.189) 

Consider the Poincare map. It has two points corresponding to the state at t0 and t0+T.

Point 0Y  after time T becomes point 1Y . So, we can consider a vector-valued function G

that maps the first point to the second one. Actually, it is the value of the solution taken 

after a given period of time. The solution in general depends on initial conditions and 

time. The Poincare map is dependent on the previous point (which plays role of initial 

conditions in this case) only: 
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It is important to note that the steady state periodic solution is mapped to itself: 

)( ss YGY  (4.191) 

Using (4.186): 
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Here, 11 is a small perturbation by roll angle and 12 is a small perturbation by angular 

velocity at the moment t0+T.  The equation (4.192) in scalar form is: 
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 (4.193) 

Since the perturbation is small, equations (4.192) or (4.193) can be expanded in a Taylor 

series in the vicinity of the fixed point (with a point on the Poincare map corresponding 

to steady state regime or limit cycle): 
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 (4.194) 
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Taking into account (4.191) and limiting ourselves with the terms of the first order: 
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 (4.195) 

or
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The matrix that consists of partial derivatives of a vector valued function, as it appears in 

equation (4.196), has a special name. It is called a Jacobean matrix and it has a meaning 

of the generalized derivative for a vector-valued function. It is usually denoted as )J(G .

Eigenvalues of the Jacobean matrix contain the most important information. If 

eigenvalues are inside the unit circle at the complex plane (modulus of the eigenvalues 

does not exceed one), the steady state regime (fixed point or limit cycle) is stable. The 

derivation is not difficult and a detailed description was made by Thompson and Stewart 

[1986], so it is not necessary to copy it here. However, it is interesting to note certain 

similarities with the Floquett theory described in subchapter 4.4.2. 

Also, it is convenient to track behavior of the steady state solution (fixed point or limit 

cycle) using Trace Determinant plane. These quantities are defined through the Jacobean 

matrix as: 
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These figures will be used later in subchapter 4.5 when we will consider bifurcations. 

The last question to answer is how to calculate the Jacobean matrix having the system in 

the form (4.95)? Actually, the simplest way is by direct numerical differentiation. As an 

alternative, Virgin [1987] proposed to use one more point: 

201122 )2,(),( sYTtYYTtYYY  (4.199) 

Considering the perturbation small, we can assume that the same function G  (4.190) 

defines mapping of point 1Y  to point 2Y . This allows the addition of two more equations 

into the system (4.195): 
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 (4.200) 

There are four unknown members of a Jacobean matrix and four linear equations in the 

system (4.200), A value of initial perturbation ),( 02010  is given. The values of 

variation ),( 12111 after period T and ),( 22212  after two periods - 2T are known 

from numerical calculations. Then, the solution of the system (4.200) does not encounter 

any difficulties.

4.4.4 Motion Stability of Piecewise Linear System 

We complete our treatment of stability of steady state motions with a similar 

consideration of the piecewise linear system, using solution (4.115)-(4.117). The main 

problem here is that the steady state solution consists of four functions (for the symmetric 

case) smoothly attached to each other like a chain. We could, of course, treat this solution 

as numerical and use the method described in subchapter 4.4.3, but there is a more 

elegant way. 

An analogous problem was solved by Murashige, et al [1998] for a piecewise nonlinear 

system. Following the principle described there, we calculate the Jacobean matrix for 

each range first. The resulting Jacobean matrix is their product. 

Here, we use the same functions f0 and f1 as they were defined in subchapter 4.2.6 with 

the only difference that we have to add the initial conditions for the roll angle at the 

moment of crossing the boundary between two linear ranges. Since we have to consider 

the full period of motion (instead of the half-period as in subchapter 4.2.6) both positive 

and negative boundaries are to be crossed, see fig. 4.24. 

In order to take into account this circumstance, the formulae (4.116) and (4.117) are used. 

However, the solution for the first range has to be re-written as: 

)sin()(sin)(),,( 00,000,000000 qan

t

na tqteTf  (4.201) 

With 00 mn  the Jacobean matrix is expressed as: 
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Fig. 4.24 On motion stability of piecewise linear system 

The steady state solution for the second range is defined by formula (4.117). We have 

rewritten it to emphasize that the initial roll angle here is the positive boundary: 
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This formula leads to the following expression for the Jacobean matrix: 
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 (4.204) 

The third range is again controlled by the solution (4.116), but we have to rewrite it with 

respect to the positive boundary: 

)sin()(sin)(),,( 00,000,000002 qam

t

ma tqteTf  (4.205) 

The Jacobean matrix is: 
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Motions on the fourth range are governed by the solution (4.117) by taking into account 

that both the boundary and angle of vanishing stability are negative:
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With the Jacobean matrix: 
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 (4.206) 

The resulting Jacobean matrix can be expressed as a product: 

0123)( JJJJGJ  (4.207) 

Calculation of the partial derivatives is not so easy, so we suggest numerical 

differentiation for practical calculations. It is possible to do more analytical work, trying 

to get formulae without numerical procedures, using the chain formula for differentiation 

of multivariable functions f0, f1, f2, f3. However, application of this formula would require 

working with inverse functions, that cannot be expressed via elementary functions, so a 

numerical procedure seems to be more rational than any other approximate solution 

involving, for example, a multivariable series expansion. 

A more general case of motion stability of a piecewise linear system, including initial 

heel, is considered in [Belenky, 1999]. 

4.5 Bifurcation Analysis 

4.5.1 General 

We have just completed a review of different methods of determining whether the steady 

state mode of motion is stable or not. The next question to be answered is what is going 

to happen when the steady state motion loses its stability? To address this issue, we use a 

standard approach of nonlinear dynamics: we pick a parameter, change it systematically 

and see what happens to the system. This parameter has a special name: it is called a 

“control parameter”.  

In general, the choice of control parameter strongly depends on the context of the 

problem. We are going to use excitation frequency as a control parameter for the roll 

equation. This choice is especially convenient because we usually present the solution for 

steady state motions as a response curve, where amplitude and phase are plotted against 

the excitation frequency. 

The analysis consists of the following steps: 

Assign the frequency; 

Calculate amplitude and phase for the steady state solution using any of the 

approximate methods described in subchapter 4.2; 

Calculate initial conditions, corresponding to steady state mode of motions;  

Evaluate stability of the steady state solution: the result is presented as a pair of 

eigenvalues and as a point on the Trace-Determinant plane; 
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Visualize the motion by numerical solution with the above initial conditions; 

Plot phase trajectory and Poincare map; 

Plot the series of eigenvalues makes a trace on the complex plane. Such a plot 

usually is called a “locus”. 

Following Nayfeh and Sanchez [1990] we consider an example for biased ship; roll 

motions are described as: 

taa
E

cos2 5

5

3

3

23

3
 (4.208) 

The bias makes it easy to see all the instabilities. (However, it is possible to find the same 

phenomena of non-biased systems as well [Belenky, 1999].) The following implements 

the bias for the system (4.208), see Nayfeh and Sanchez [1990] for more details: 

( ) ( )t u tS  (4.209) 

Numerical values for the coefficients are given in table 4.2.  

Table 4.2 Numerical values  

Static bias, s, degree 6 Restoring coefficient 2

3 /a -1.3

Damping coefficient 1/s 0.086 Restoring coefficient 2

5 /a 0.3

Damping coefficient 3, s/rad
2 0.108 Amplitude of effective wave slope, Rad 0.23 

Natural frequency , 1/s 5.278 Inertial coefficient a44/Ixx 0.25 

4.5.2 Fold Bifurcation 

We are moving from the origin of the coordinate system. The solution is trivial before 

point A at the response curve on fig. 4.25. 

There are three solutions after point A. Let us look at the low amplitude first. Nothing 

special happens while moving from point A to point B in fig. 4.25. The locus for the 

eigenvalues is shown in fig. 4.26. 

Fig 4.25 “Jump” phenomenon or fold bifurcation 
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We observe that the eigenvalues remain complex for 

a while. They become real at = 0.7293 and 

leave the unit circle in a positive direction at =

0.7298, which corresponds to point B in fig. 4.25. It 

means that the steady state regime middle amplitude 

is unstable. What does it mean? 

An unstable steady state regime cannot be realized 

physically or even numerically for a long time. 

Small perturbations that always exist in the real 

world will rise and eventually take the system away 

from the unstable regime to the stable one. If we are 

at the point B, the most probable alternative is a high 

amplitude regime at the point C on fig 4.25. (The other alternative is the stable regime 

near another stable equilibrium, which means capsizing; these kinds of transitions are 

considered in Chapter 5.)  

A numerical solution of the equation (4.209) is similar to a physical experiment in the 

sense that an unstable regime cannot be reproduced as well. The computer presents 

values with a finite number of digits. This means that all the physical values in the 

computer are approximate, and these associated inaccuracies play the role of a small 

perturbations, which will increase and take the system to a stable state. So the numerical 

method cannot provide us with the unstable solution lasting for a significant time. (It is 

possible, however, to get an unstable steady state solution for a short time, like one or 

two periods, but this requires very accurate initial conditions, which could be found only 

with a really fine mesh. Such a procedure requires a significant amount of computing.) 

A numerical calculation shows that the system 

makes the “jump” to higher amplitude being 

started with the initial conditions 

corresponding to point B. The phase trajectory 

of such a jump is shown in fig. 4.27. 

Let’s continue moving from point B to point D 

(in fig. 4.25) along the dashed line. To do that, 

we decrease excitation frequency and assign 

initial conditions for the middle amplitude 

case. The numerical solution cannot be 

obtained for a long time: the system “jumps” 

low or to high amplitude mode. The choice 

where to jump depends on initial conditions. We will address the transition problem later 

in Chapter 5 when we will be considering capsizing, which is also a transition to another 

stable state of the system. 

When we reach point D in fig. 4.25, the eigenvalues return back to the unit circle and the 

steady state regime becomes stable again, fig 4.28. 

In order to move further along the response curve (fig. 4.25), we have to increase the 

excitation frequency again. After we reach point C, there are no longer several solutions 

available.

Imaginary 

 Real -1

-1

1

1

Unstable 
steady state 

response

Stable steady 
state response 

with low 
amplitude  

Fig. 4.26 Locus: track of 

eigenvalues  

Fig. 4.27 Phase trajectory of “jump” 



Chapter 4 154 

Now, let us decrease the excitation frequency from point C 

and move back along the response curve in fig. 4.25. The 

amplitudes increase until we reach point D, where only one 

solution is available. Here, the system experiences “jump 

back” to point A with a dramatic decrease of amplitude. 

Since there are two stable steady state solutions (they are 

always separated by the unstable one), we see the phenomena 

of hysteresis here: with “jump up” and “jump down” 

happening at different frequencies. 

Generally, the phenomenon we just observed is called 

“bifurcation”. It is an instant qualitative change in the behavior of the system. In the 

absence of bifurcation, a small change of the control parameter leads to small changes in 

the response. Bifurcation breaks this continuity. 

There are many different bifurcations in a nonlinear dynamical system and some of them 

were found for large-amplitude ship roll. Classification of bifurcation exists [Thompson 

and Stewart 1986], but standard terminology is not yet established. The bifurcation we 

have just seen happens when eigenvalues leave the unit circle in a positive direction and 

is known under names “fold bifurcation”, or “tangent instability”. 

Another convenient way to observe 

bifurcation is by use of the Trace-

Determinant plane, see fig. 4.29. It is not so 

difficult to see from formula (4.185) that 

stability boundaries in the Trace-

Determinant plane by three straight lines: 

1DtTr , 1DtTr  and 1Dt .

Curve DtTr 2  is an area of points 

where the discriminate of the quadratic 

equation (4.182) is zero: eigenvalues are 

complex in the inner area of this curve. 

Analogously to the locus of eigenvalues, 

the type of bifurcation can be seen by the 

boundary that is crossed by the image point. The “upper” boundary corresponds to fold 

bifurcation, the lower boundary corresponds to flip or period doubling bifurcation (we 

will be looking at this bifurcation in subchapter 4.5.3) and the left boundary corresponds 

to flutter bifurcation, which is impossible in the roll equation we study. 

4.5.3 Period Doubling and Deterministic Chaos 

To observe flip or period doubling bifurcation, we start from high frequencies and 

decrease excitation frequency - our control parameter. The picture of behavior of the 

eigenvalues – the locus, is shown in fig. 4.30. The eigenvalues stay complex, become real 

( =1.053) and leave the unit circle in a negative direction ( =1.000). 

First the phase trajectory becomes clearly asymmetric ( =0.93), fig. 4.31a. Further 

decreasing of the excitation frequency leads to the first doubling of the response period 

Fig. 4.28 Eigenvalues 

(through point D) 

Fig. 4.29 Trace –Determinant plane 
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( =0.89), fig. 4.31b. The next steps are 4T response 

( =0.885), fig. 4.31c and 8T response ( =0.88) 

fig. 4.31d. Then further doubling of the period leads the 

system to a chaotic response ( =0.87) fig. 4.31e. 

Poincare maps and fragments of time histories are 

shown along with phase trajectories. 

Fig. 4.31 Flip bifurcation: phase planes, Poincare maps and time histories 
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Deterministic chaos is a typical phenomenon for a nonlinear system. As we have just 

seen, nonlinear roll is not an exception. There are several ways for a general nonlinear 

system to develop a chaotic response, for more information, see Thompson and Stewart 

[1986]. Further decreasing of excitation frequency takes the system out of the chaotic 

state and we observe inverse development of period doubling or flip bifurcation.  It is 

convenient to show the whole picture of period doubling and chaos in the bifurcation 

diagram shown in fig. 4.32. The Trace - Determinant plane is shown in fig. 4.33. 

Fig 4.32 Flip bifurcation diagram Fig. 4.33 Trace-Determinant plane for flip 

bifurcation 

4.5.4 Bifurcations of Piecewise Linear System 

So far, we were able to show that a piecewise linear system (4.6) has the same properties 

as a “conventional” nonlinear equation of roll (4.30). We obtained the backbone line in 

subchapter 4.1.2, the exact steady state solution in subchapter 4.2.6 and showed that 

stability of its steady state solution can also be checked easily (subchapter 4.4.4). Now, 

we are going to look at its bifurcation behavior. 

As can be seen from fig.4.34, the motion stability analysis indicates the presence of flip 

and fold bifurcations. Existence of fold bifurcation is clearly seen from fig.4.11 where we 

have a range with three amplitudes corresponding to the same frequency. As we have just 

seen, the conventional nonlinear system has three responses in the fold bifurcation zone: 

two stable ones and one unstable between them.  

Fig. 4.34 Eigenvalues and Trace –Determinant plane of piecewise linear system 
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Working with the piecewise linear system, we also get three responses in this area, one of 

them is pure linear or trivial, so it is definitely stable. Two piecewise linear responses 

were obtained from the same system of equation (4.115) using two different initial points. 

One of these initial points corresponds to a high amplitude response of the equivalently 

linearized solution; another one is from the middle one. The middle solution is expected 

to be unstable, the high one - stable.

These expectations are correct. Fold bifurcation is illustrated in fig. 4.35, where both 

“jumps” are shown. The system was started from initial conditions corresponding to the 

unstable steady state regime (with middle amplitude). After a certain time, an increasing 

perturbation finally took the system towards one of the stable steady states. 

Fig. 4.35 Fold bifurcation in piecewise linear system: phase trajectory of transitions from unstable 

steady state regime (with middle amplitude) towards stable regimes with high or low amplitude 

The general appearance of eigenvalues behavior shown in fig. 4.34 indicates the 

possibility of flip bifurcation. Our task is simply to show that flip bifurcation and 

consequent deterministic chaos can be found in a piecewise linear system. Figures 4.36 

and 4.37 show phase planes, time histories and Poincare maps. Table 4.3 contains the 

numerical data for this example.  

Fig 4.36 Development of flip bifurcation in piecewise linear system 
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Fig. 4.37 Deterministic chaos in piecewise linear system ( =0.92439) 

Table 4.3 Numerical values for the considered example of piecewise linear system 

Damping coefficient 0.1 Angle of vanishing stability 1 

Excitation amplitude 0.2 Bias 0.05 

Excitation frequency 0.99-0.92 Number of point per period 50 

As we have seen from our review of bifurcations, the piecewise linear system 

qualitatively makes no difference with a conventional nonlinear system. Belenky [1999] 

contains more details. 

4.6 High Order Resonances
1

4.6.1 General 

We continue our analysis of the nonlinear qualities of the ship roll equation with ultra and 

sub-harmonic resonance phenomena. The linear system has only one resonance: when the 

excitation frequency is close to the natural frequency, we observe a dramatic increase in 

response amplitude. The nonlinear dynamical system also shows an increase of 

oscillation amplitude when it is excited near the natural frequency, but, as it is well 

known, resonance phenomena are possible at frequencies that are a multiple of the natural 

one.

If the excitation frequency k  where k is an integer, then sub-harmonic resonance 

takes place. 

If excitation frequency m/  where m is an integer, then ultra-harmonic resonance 

takes place. 

A nonlinear system possesses an infinite number of high order (ultra and sub-harmonic) 

resonances. Here, we shall study the simplest example of these resonance cases using the 

nonlinear roll equation with linear damping and a cubic presentation of the restoring 

term: 

ta
E

sin2 3

3

2  (4.210) 

                                                          
1 The author is grateful to Prof. Francescutto for fruitful discussion of the materials of this subchapter. 

t
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4.6.2 Ultra-harmonic Resonance 

Following Cardo, et al [1981] we shall search for an ultra-harmonic solution of the first 

expansion in the following form: 

0 33( ) sin( ) sint c t b t  (4.211) 

Where b is the main harmonic amplitude and c is the ultra-harmonic amplitude. 

The steady state solution (4.211) of the nonlinear differential equation (4.211) can be 

obtained by the any appropriate method, some of which were considered in subchapter 

4.2. Following Cardo, et al [1981] we use the perturbation method here. If  is a small 

value, it is chosen as a bookkeeping parameter:  

303; aa  (4.212) 

And:

...9 3
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2

2

1

22  (4.213) 

The following form of the whole stable state solution is assumed: 

0 1

2

2

3

3 ....  (4.214) 

Substitution of (4.212), (4.213) and (4.214) into (4.210) yields: 

ta E sin...92 3

303

3

2

2

1

2  (4.215) 

Further, we shall truncate all the series up to the second degree of bookkeeping parameter 

; our third order solution looks like: 

3

0

3

1 0

2 2

1 0

2

0 1

23 3  (4.216) 

Then we substitute (4.216) into (4.215) and equalize the right hand and left hand terms 

with the same power of small parameter 

tE sin9: 00

2

0

0  (4.217) 

0300101

2

1

1 29: a  (4.218) 

1030021112

2

2

2 329: a  (4.219) 

The first expansion equation (4.217) is heterogeneous here. Its solution assumed in the 

form of (4.211) can be interpreted as consisting of a general solution of the autonomous 

equation )3sin( 3tc  and particular solution of heterogeneous equation tb sin .

The amplitude of the last one can be found from the equation (4.217) directly, taking into 

account (4.214). It can be expressed as: 

22

0

22

0

9

EEb   (4.220) 

Amplitude c and initial phase angle 
3
 of the general solution of the autonomous equation 

can be found by the condition of elimination of the secular terms in the second order 
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equation (4.218) using with the perturbation technique considered in subchapter 4.2.3. 

This condition is expressed in the following system of equations: 

0cos6sin
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 (4.221) 

The system (4.221) can be reduced to one nonlinear equation, i.e. ultra-harmonic 

amplitude c by summing the second power of both equations: 

A c B c C c D6 4 2 0  (4.222) 

Where: 
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 (4.223) 

Here, we have taken into account: 22

1 9 , that was derived from (4.213). 

Equation (4.222) can be solved 

analytically. There are 6 roots: 1 

real, 1 imaginary and 4 complex 

or 3 real and 3 imaginary. The 

first case corresponds to a single 

stable state ultra-harmonic 

solution, the second one reflects 

the possibility of three stable 

state ultra-harmonic solutions, 

one of which is unstable, see fig. 

4.38. A time history of the stable 

mode of the ultra-harmonic 

oscillation is shown in fig. 4.39

The initial phase angle can be 

found from the second equation 

(4.221) when the ultra-harmonic 

amplitude has been found: 

2
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3
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6
arctan

caba

 (4.224) 

Fig. 4.38 Ultra-harmonic response curve 
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According to Cardo, et al [1981], the ultra-harmonic resonance phenomenon is very 

sensitive to roll damping. Because of that, we are forced to choose a very small roll 

damping value coefficient for our numerical example presented in the figures above. 

Fig. 4.39 Time history of ultra-harmonic oscillation, high amplitude mode (

4.6.3 Sub-harmonic Resonance 

Following Cardo, et al [1981] we continue our study of high order resonance by 

consideration of the sub-harmonic response with the frequency three times greater than 

the natural one. The first order expansion of the steady state solution should be taken in 

the following form: 

tbtct sin
3

1
sin)( 3/10  (4.225) 

Using the perturbation technique for finding the elements is practically the same as in the 

previous case with ultra-harmonic response: 
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9
...  (4.226) 

The system of consequent linear differential equations, each of which corresponds to a 

certain power of bookkeeping parameter  will look like

tE sin
9

1
: 00
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0

0  (4.227) 
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The first expansion equation (4.227) is heterogeneous here. Its solution assumed in the 

form of (4.225) can be interpreted as consisting of the general solution of the autonomous 

equation and a particular solution of the heterogeneous equation. The amplitude of the 

latter can be found from the equation (4.227), analogous to the previous case: 
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22

0

22

0

9

1
EEb  (4.230) 

Amplitude c and initial phase angle 3 of the general solution of the autonomous equation 

can be found by elimination of the secular terms in the second order equation (4.228) that 

can be expressed in the following system of equations: 
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 (4.231) 

The system (4.231) can be reduced to one nonlinear equation, i.e. sub-harmonic 

amplitude c by summing the second power of both equations: 

024 CcBcA  (4.232) 
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Equation (4.232) is bi-quadratic; it has 4 roots: 

A

ACBB
c

2

42

4,3,2,1  (4.234) 

We are interested in the positive real 

roots only. Formally, it is possible to 

obtain one or two of them, one to stable 

steady state. The discriminate of the 

equation is the threshold of the sub-

harmonic response; see Cardo, et al

[1981]. The response curve is shown in 

fig. 4.40 and a sample of the time history 

in fig 4.41. 

The initial phase angle can be found from 

any equation of (4.231) once the sub-

harmonic amplitude is known: 
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Fig. 4.41 Time history of sub-harmonic oscillation ( 

Now, it is possible to plot the whole response curve including main, ultra- and sub-

harmonic resonance features. To do so, we need to calculate the maximum roll amplitude 

versus excitation frequency. The approximate formula for the maximum roll amplitude 

near the ultra-harmonic resonance is given in Cardo, et al [1982]: 

2max
8

9
)()( E

ultrac  (4.236) 

The maximum roll amplitude near 

sub-harmonic resonance has been 

calculated numerically. The 

whole response curve is given in 

fig. 4.42. The main resonance 

peak has one feature: it is not 

closed as it was in our previous 

example. Such a result can be 

explained by the error caused by 

the first expansion, see Nayfeh 

and Khdeir [1986] that is 

especially seen in conditions of 

light damping. A similar picture 

can be found in Francescutto 

[1991].
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Fig. 4.42 Maximum roll amplitude versus excitation 

frequency including ultra- and sub-harmonic responses 
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Chapter 5  

Capsizing in Regular Beam Seas 

If we want to study a phenomenon, we should define it first. The most obvious definition 

of capsizing says, “capsizing is a transition to motion at another stable equilibrium that is 

dangerous from practical point of view” [Sevastianov and Pham, 1979]. However, not all 

the methods of stability evaluation use this definition directly. This chapter reviews these 

methods based on what definition of capsizing (or ship stability) they use. 

5.1 Classical Definition of Stability

We start from the definition of ship stability. It is quite natural to start with the classical 

definition, the contemporary formulation of which was given by Krylov [1958]. It says: 

“we call stability the ability of a ship to float in an upright position and, if inclined under 

the action of an external cause, to return to the above said position after the external 

cause ceased acting”. 

Let us look at this definition from the point of view of the theory of oscillations. It means 

that the external force vanishes at the moment of stability determination and consequent 

motion is free. The definition seems a bit artificial, because wind and wave action in a 

real sea could not be stopped at the moment when we are interested to see if our ship is 

stable or not. However, as it will be shown further, in subchapter 5.3, this classical 

definition works pretty well for practical purposes. 

5.1.1 Concept of Separatrix 

So we consider an autonomous dynamic system describing nonlinear ship roll motion in 

calm water: 

 0)(2 f  (5.1) 

We do not consider nonlinearity of roll damping for simplicity’s sake: we keep 

nonlinearity for the restoring moment only. Function f that represents the GZ curve 

should be considered until the upside down position while we are examining capsizing, 

fig.5.1.

As we have seen in subchapter 4.3, the dynamic system (5.1) has three equilibria. Two of 

them are stable: the upright position and upside down (capsized) position. This means 

that the ship can stay there indefinitely if external forces are absent, and if some small 

excitation does occur. There is unstable equilibrium between two stable ones: it is the 

angle of vanishing stability. Theoretically, the system also can stay at this position for an 
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infinitely long term, but in real life any small excitation can disturb the system and it will 

move to one of the stable equilibria positions. 

Fig. 5.1 GZ curve and positions of equilibria 

We already implemented the phase plane concept in subchapter 4.3.5. The main 

advantage of the use of the phase plane in comparison with time domain is an ability to 

see all possible motions simultaneously. Again, the phase plane for a dynamic system 

(5.1) is defined as a rectangular co-ordinate axis system ),( . The state of the system at 

any time is reflected in the phase plane by a point with corresponding co-ordinates that is 

usually called the “image point”. When the system is in motion, the image point is 

creating a trace on the phase plane. Such a trace is called “phase trajectory” and the 

whole aggregate of phase trajectories is called the “phase portrait”. Equilibrium of the 

dynamic system corresponds to the so-called “singular point”. So we first consider our 

dynamic system of the phase plane from the analysis of phase trajectories near a singular 

point, e.g. the above mentioned equilibria. 

Let us consider the system without damping first:  

 0)(2 f  (5.2) 

As it is easy to see from equation (4.132) with 0 , its solution in the vicinity of the 

original or “normal” equilibrium looks like: 

tte A

t

A sinsin 22  (5.3) 

With the derivative: 

tA cos  (5.4) 

The phase portrait near the original equilibrium now looks like a family of ellipses. The 

same can be stated on the phase portrait in the vicinity of capsized equilibrium. Such a 

singular point is called the “centre”, and we have seen it already in fig. 4.18 of subchapter 

4.3.5 that contains a summary of all linear phase portraits (singular points). As can be 

seen from that figure, there are no visible changes for unstable equilibria, it is a saddle. 

f( )

v

Stable upright 
equilibrium

Unstable equilibrium at 
angle of vanishing 

stability

Stable equilibrium at 
capsized position 
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The general view of phase 

portrait is defined by all 

three singular points, see 

fig. 5.2. New elements, 

which should be 

particularly pointed out, 

are phase trajectories that 

separate areas, where the 

system is attracted by 

upright or capsized 

equilibria or experience 

rotation motion. Such a 

phase trajectory is called 

“separatrix”.  

Separatorices (plural for separatrix) start from the unstable equilibrium as straight lines at 

the saddle point. These straight lines are defined by the following formulae [Andronov, et

al, 1966]: 

1k  (5.5) 

They are the only phase trajectories, which lead to the angle of vanishing stability. It is 

quite clear, however, that moving along these trajectories, the system would achieve the 

unstable equilibria only after infinite time. The separatorices are the only phase 

trajectories that are inclined to the axis  with the angle different from 

If we use a cubic approximation for the GZ curve: 

 0)( 3

3

2 a  (5.6) 

After we introduce the non-dimensional time t , the system changes to: 
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 (5.7) 

There is a close form for the separatorices [Vishnubhota, et al, 2000]: 
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02

3

0

3

a

a
 (5.8) 

Where 0 is initial time. 

Now, let’s consider the influence of damping. The phase picture in the vicinity of stable 

equilibria is now a stable focus, see fig. 5.3. Now separatorices are not closed. There is 

no rotation regime possible and there are only two attraction areas to the stable equilibria. 

All phase trajectories lead the system to one of the stable equilibria: to the normal or 

Fig. 5.2 Phase plane of free nonlinear roll motion 



Chapter 5 168 

capsized one. Separatorices in the vicinity of the angle of vanishing stability are still 

straight lines defined by the equations: 

1

22 k  (5.9) 

The separatorices subdivide the phase plane in two parts. One of them is called the “safe 

basin” and includes phase trajectories that lead to the upright equilibrium position. 

Another one contains phase trajectories that lead the system to the upside down 

equilibrium position, which means capsizing. 

Fig. 5.3 Phase plane for free roll motion with damping 

Now we can relate the classical stability definition with capsizing phenomenon. Assume 

the external forces created a certain angle of heel and angular velocity. It means, they 

took the system to a point in the phase plane and then let it go. In other words, the 

external forces created initial conditions.  

If external forces stop their action when the angle of heel and angular velocity correspond 

to an image point which is situated inside the safe basin, so capsizing is impossible and 

the ship should be considered as stable according to the classical definition of stability.  

This analysis can be generalized for an example of ship motion with all six degrees of 

freedom. We should stop the action of external forces at the moment we would like to 

assess the ship’s stability: if the ship will return to her initial position, then she is stable. 

We can proceed with this analysis until the time the ship will not return to the normal 

equilibrium position. Such an initial condition can be considered as critical. In other 

words, this point belongs to a separatrix hyper-surface in a multidimensional phase space. 

Similar to the case with only one degree of freedom, crossing of the separatrix hyper-

surface is related with capsizing.  

Summarizing all of the above, we can state that according to the classical definition of 

stability, crossing of the separatrix (separatrix surface) in the phase plane (space) by the 

forced phase trajectory leads to capsizing. 

5.1.2 Calculation of Separatrix 

The next problem to consider is a method of separatrix calculation. There is no general 

analytical way, as there is no analytical method for solving a nonlinear differential 

equation of the general kind. Therefore, we have to use numerical methods. Because the 
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separatrix divides domains of two types of solution of the differential equation (5.1), we 

can integrate this equation, changing initial conditions systematically. We are looking for 

the point when the system will not return to its initial equilibrium position. Then the 

iteration method can be applied for a precise location of a point that belongs to the 

separatrix. Repeating this procedure, we can find co-ordinates of the separatrix as 

accurately as needed. 

There is an alternative method. If we take into account that the separatrix is also a phase 

trajectory and we know at least one point of this phase trajectory, it is the angle of 

vanishing stability. We can begin numerical integration of equation (5.1) in inverse time. 

The problem here is the correct choice of initial conditions. The separatrix has two 

branches. If we start exactly from the angle of vanishing stability, we get just one branch 

of the separatrix, and it is difficult to predict which one. Why does this happen? 

The angle of vanishing stability is the unstable equilibrium (see subchapter 4.3). The 

system cannot stay there for a long time: a very small perturbation will take the system to 

one of the stable equilibria. As we noted in subchapter 4.5.2, the computer presents 

floating point values with certain accuracy, so the last digit always contains a rounding 

error. This error plays a role of a small perturbation during numerical integration. Since 

we do not have control over this error, the direction of motion will be chosen randomly. 

To gain control, we have to introduce perturbation in a required direction to ensure we 

get both branches. These initial perturbations can be calculated using formula (5.9): 
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22
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k

k
 (5.10) 

The numerical value for  has to be defined depending on the number of digits in the 

engineering value format. For example, if there are six digits and the maximum roll angle 

is in units of radians, it might be recommended to set :

56 101...105  (5.11) 

The initial condition for numerical integration of the equation (5.1): 
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 (5.12) 

The saddle has two asymptotes; we have used only one. The other asymptote does not 

belong to the separatrix in the case of a damped system (5.1), but if there is no damping, 

the second asymptote is also a part of the separatrix; compare fig.5.2 and 5.3. 

This method was used by Sevastianov and Pham [1979], and Umeda, et al [1990] for 

calculation of the separatrix. 
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5.1.3 Separatrix, Eigenvalues and Eigenvectors 

There is a very important relationship between eigenvalues at the unstable equilibrium 

and the separatrix. The reader probably already noted the geometrical meaning of the 

eigenvalues for this type of singular point: they are angle coefficients for asymptotes in 

the phase picture.

The concept of asymptotes works fine for the phase plane. However, what are we going 

to do if there are more degrees of freedom? It is very possible we will have to deal with 

phase space beyond three dimensions that we can neither plot nor imagine. In fact, the 

relationship between separatrix and eigenvalues is much more general and does not 

depend on how many degrees of freedom are involved. 

This relationship is supported through eigenvectors. Eigenvectors (as the eigenvalues) are 

a concept of linear algebra, see, Apostol [1997] for an example. Before we give a formal 

definition of the eigenvectors, let’s review the roll equation linearized in the vicinity of 

the angle of vanishing stability (4.137): 

 02 1

2

1

2

vkk

For the sake of simplicity we transfer the origin of the co-ordinate system into the angle 

of vanishing stability: 

v  (5.13) 

Therefore:
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2k  (5.14) 

Also, we rewrite this equation in vector form: 

),( tYFY  (5.15) 
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The vector valued function ),( tYF  contains only a linear operation and can be presented 

as:

X
k

tYF A
01

2
),( 1

2

 (5.17) 

Eigenvalues of the matrix A are the same as that for the differential equation (5.14). 

Using the definition for eigenvalues [Bronshtein and Semendyayev, 1997]: 

0det IA  (5.18) 
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Where I is the identity matrix: 

10

01
I  (5.19) 

The characteristic equation of matrix A (5.18) is exactly the same characteristic equation 

of roll at the angle of vanishing stability (4.142): 

02 1

22 k  (5.20) 

Naturally, the eigenvalues of matrix A are identical to the eigenvalues of the roll equation 

linearized at the angle of vanishing stability defined by formula (4.143): 

1

22

2,1 k  (5.21) 

Now, the eigenvectors of matrix A are defined to satisfy the following equation 

[Bronshtein and Semendyayev, 1997]: 

0XIA  (5.22) 

Equation (5.22) is a homogenous system of linear equations. It has non-trivial solutions 

because the determinant of its coefficient matrix is zero due to (5.18). Let us solve it for 

the eigenvalue 1:

1

22

1 k  (5.23) 

The system of linear equations looks like: 
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0)2(
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 (5.24) 

We can express the relationship between X1 and X2 from the second equation of the 

system (5.24) immediately: 

211 XX  (5.25) 

After substitution of formula (5.25) into the system (5.24), the first equation of the 

system is: 

0)2( 21

2

211 XkX  (5.26) 

Then we substitute (5.23) and see that: 
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Trying to simplify the equation (5.25) we obtain: 
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2

1

222 Xkk

We find that the expression in the external parentheses equals zero: 

00 2X  (5.27) 
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Equation (5.27) does not contain any particular information about X2. Any value satisfies 

this equation. It means that the system (5.24) has an infinite number of solutions as soon 

as its co-ordinates comply with (5.25). Provided that a is any real number, it can be 

expressed as: 

1

1
aX  (5.28) 

Analogously, we can find the second set of eigenvectors corresponding to the second 

eigenvalue 2:

1

2
aZ  (5.29) 

Now, it is easy to see that these two sets of eigenvectors actually define directions of 

asymptotes (5.9). It means that when we want to get the separatrix of the system in the 

position of unstable equilibria, the system has to be perturbed in the direction of the 

eigenvectors, see fig 5.4. 

Fig 5.4 Eigenvectors and separatorices 

This is a very important outcome. As it was stated earlier, it is applicable to any number 

of degrees of freedom: we did not assume any specific size of matrixes and vectors while 

making derivations (5.15-29), so it is applicable for any size.

The calculation of eigenvectors is a standard numerical procedure; corresponding 

subroutines or functions can be found in almost any math package. These packages, 

however, usually calculate eigenvectors in the normalized form (provided their length is 

1), so if we would use them, the answer would be in the following form: 
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5.1.4 Numerical Validation of Classical Definition of Stability 

Now we have the mathematical equivalent of the classical definition of ship stability: 

capsizing is crossing of the separatrix. However, we are still in doubt [Sevastianov, 

1978]: how can we deal with the changing excitation which can not only push the motion 

out of the separatrix, but to take the image point back “by force” as well? Really, there 

are some artificial elements in the classical definition of stability: wind and wave 

excitation never disappear in real seas at the moment when we would like to determine if 

the ship is stable or not. To erase these doubts, the classical definition of stability has to 

be validated.

Such a validation answer to this question was given by computer simulation, which was 

carried out at the Naval Architecture department of Kaliningrad Institute of Technology 

(Russia) by one of the authors and Pham Ngock Hoeh [Sevastianov, 1977]. The 

following mathematical model was studied: 

m

x

x
VrVrr
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I
f

44

2 /2  (5.31) 

Here r means relative roll angle (see Chapter 3). The non-dimensional damping 

coefficient was taken as a fraction of critical damping: 

/  (5.32) 

The restoring term was approximated with a polynomial of the 5
th

 order: 

5
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3

31 //// VrVrVrVr aaaf  (5.33) 

1. Wave excitation was asymptotically regular and was defined as follows: 

0

2 21( exp( )) sinp t t  (5.34) 

Where p is the parameter of the speed of increasing waves.  

Such a form was adopted to avoid the influence of initial conditions and to make 

transition motion softer. 

There were 32 runs. From 

the first two series, that 

included 10 runs, it was 

found that the most 

dangerous regime can be 

obtained when 8.0/

and 1.0/p . Capsizing 

was observed in three runs. 

Crossing of the separatrix 

was observed only in these 

three runs when capsizing 

also took place. One of these 

runs is described here: 

numerical data is collected in 

Table 5.1 and phase 

trajectory is shown in fig. 5.5. 

Fig. 5.5 Results of numerical simulations of ship roll and 

capsizing on phase plane 
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Table 5.1 Characteristics of the model 

Displacement   W metric tons 100

Transverse moment of inertia Ixx, metric tons m2 300

Added moment of inertia A44 , metric tons m2 100

Initial metacentric height GM0, m 0.64

Additional changing of metacentric height GM , m -0.15

Non-dimensional damping coefficient, 0.05

Angle of vanishing stability, V, Rad 0.8

Amplitude of wave slope angle, 0, degree 12

GZ approximating coefficient   a1 1

GZ approximating coefficient   a3 -11/7

GZ approximating coefficient   a5 4/7

It can be seen clearly from fig. 5.5 that crossing of the separatrix by forced motion phase 

trajectory leads to capsizing, perhaps not immediately, but in a short time. The other 

numerical simulations that consisted of 15 runs confirmed this conclusion.  

At least, the validity of the classical definition of stability was not disproved by the 

described numerical simulations. A theoretical explanation of these observations was 

found using the piecewise linear model and it is considered in subchapter 5.2. 

5.2 Piecewise Linear Model of Capsizing 

5.2.1 General 

We have discussed above (subchapter 5.1) the classical definition of stability: “the ability 

of a ship to float in an upright position and, if inclined under action of an external cause, 

to return to the above said position after the external cause ceased acting”. We have noted 

that this definition sounds artificial because external forces are supposed to disappear at 

the moment we would like to assess stability. However, as we discussed in subchapter 

5.1.4, the numerical simulation test has shown that the classical definition of stability is 

adequate.

In this subchapter we are going to use a piecewise linear system to implement a direct 

definition of capsizing “ as a transition to oscillation near a stable position of equilibrium 

that is dangerous from a practical point of view” [Sevastianov and Pham, 1979]. 

We introduced the piecewise linear system in Chapter 4, showing that it is the simplest 

system that describes capsizing directly as a transition to another equilibrium. We have 

seen that we can treat a piecewise linear system as conventional nonlinear. We can find 

the natural period of large amplitude oscillations (subchapter 4.1.2) and the steady state 

regime of forced motions (subchapter 4.2.6). We were able to check the stability of 

steady state motion (subchapter 4.4.4) and to see the development of bifurcations 

(subchapter 4.5.4). Again, all these studies were done to convince the reader that despite 
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the “strange” approximation of the GZ curve, the piecewise system is a qualitatively 

adequate model of nonlinear roll motions of ship. 

Generally speaking, the piecewise linear model is a particular case of a nonlinear 

dynamic system. Andronov, et al [1966] applied this approach for clock theory and the 

description of dry friction. Komuro [1988, 1988a, 1992, 1994] carried out comprehensive 

theoretical studies of the piecewise linear vector field that is a general form of the model 

we use. The piecewise linear system has been applied to a wide range of engineering 

problems [Smolnikov and Byohkov, 1972; Choi and Noah, 1988; Kim and Noah, 1991; 

Troesch, et al, 1992; Karr, et al, 1995; Zuo and Hjelmstad, 1998]. 

5.2.2 Capsizing in Piecewise Linear System 

The main question we are interested in is how capsizing occurs in the piecewise linear 

system. Let us consider it in a form (4.106): 

)sin()(2 2

EEL tf

Piecewise linear term )(Lf  is described in formula (4.7) and shown in fig.4.3. The 

system has a solution that “switches” at the moment of crossing boundary, see formula 

(4.107):
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With eigenvalues and arbitrary constants defined by formulae (4.108-114), we look at the 

system when it crosses the boundary m0, rolling in a positive direction, i.e. coming from 

range 0 to range 1. According to the general solution (4.107), its second equation is about 

to take control over the motion: 
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21  (5.35) 

It clearly can be seen from the formula (4.114) that in the pair of the eigenvalues, one is 

always positive and another is always negative: 
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 (5.36) 

Evidently the term A texp( )1  with positive index 1 is unbounded and terms with 

negative index 2 and harmonic term Va tptp 11sin  are bounded.  

As soon as a ship reaches angle m0 and enters the range 1, her further motion will be 

defined by the unbounded term, which will lead the motion out of the range 1. This can 

be done in two ways: back to range 0 or further to range 2. The sign of the coefficient A

defines the direction of this term’s action.  
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If A>0 and the ship has reached m0, her further motion will lead her up to range 2, where 

the stable oscillation regime around the stable equilibrium “mast down” exists. So this is 

capsizing.

If A<0 and the ship has reached m0, her further motion takes her back to the range 0, 

where the stable oscillation regime around “mast up” equilibrium exists. So the ship will 

not capsize during the next semi-period of roll. 

Consequently, capsizing in a piecewise linear system can be defined as the event of 

crossing of the boundary m0 in the positive direction and a positive value of coefficient A
[Belenky, 1989, 1993]. The example of the time history of the roll process with capsizing 

is given in fig. 5.6 and corresponding phase trajectory in fig. 5.7. 

Figure 5.6 Time history of capsizing for piecewise linear system 

Figure 5.7 Phase trajectory of capsizing for piecewise linear system 

10 20 30 40 50 60 70

-2

-1

0

1

2

3

4

5

6
Rad

t, s 

-1.5

-1

1

1.5

Rad

, Rad/s 



Capsizing in Regular Beam Seas 177 

5.2.3 Piecewise linear System and Classical Definition of Stability 

We have seen that a possibility of capsizing is determined by the exponential term with a 

positive argument, which belongs to the general solution of the autonomous equation. Let 

us try to determine the influence of the particular solution: 

Vpa tptp )sin()( 1  (5.37) 

With amplitude and phase given by formulae (4.109).  

This question is important because the particular solution reflects the action of external 

forces and their contribution towards the possibility of capsizing. 

This influence can be estimated using the formula for the arbitrary constant A, which 

includes the value of the particular solution p1 and its derivative 1p  at the moment it 

enters into range 1:

21

11211 pp
A  (5.38) 

The particular solution (5.37) consists of a constant value and harmonic function. The 

constant value is equal to the angle of vanishing stability and reflects the fact that we are 

moving towards an unstable position of equilibrium that is not located in the origin of the 

coordinate system. So, all the action of external forces is included in the harmonic term. 

Its maximal value is equal to the amplitude of the particular solution that is defined by 

formulae (4.109). Let’s rewrite it here: 

22222

1 4f

E
a

k

p  (5.39) 

Looking at formula (5.39), we can see its similarity with the well-known formula (4.108) 

that expresses the amplitude of response of a common linear oscillator. Let’s rewrite it 

here too: 

22222

0 4f

E
a

k

q  (5.40) 

The difference between the formulae (5.39) and (5.40) is that the subtraction in (5.34) has 

been changed to sum in formula (5.40). This is a very significant difference, because this 

subtraction is “responsible” for resonance phenomenon. When excitation and natural 

frequencies are equal, amplitude (5.40) reaches its maximal value. Formula (5.39) does 

not have such a property and numerical values of amplitude pa are significantly less than 

the values of amplitude qa, see fig. 5.8.

The physical reason for the different behavior of particular solutions in ranges 0 and 1 is 

the following: we have instant negative GM in range 1 and the natural frequency becomes 

an imaginary value, so resonance and a large amplitude value is impossible there. 
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The same could be applied 

to the real GZ curve. Instant 

GM is positive before the 

maximum of the GZ curve, 

is equal to zero at the exact 

location of the maximum 

and is negative after the 

maximum. When the roll 

angle reaches the maximum 

of the GZ curve, the ability 

of the ship to accept 

periodical external loads 

dramatically decreases. 

The above means that action 

of external forces has a 

small influence on stability in large roll angles. That is why we really can take external 

forces out of consideration, when we are defining stability [Belenky, 1991, 1993]. This is 

the theoretical explanation of the numerical results of Sevastianov and Pham [1979] that 

we have described in subchapter 5.1.4. 

5.2.4 Shapes of Capsizing Trajectories 

Capsizing is governed by the solution (5.36) that either takes the system to another 

equilibrium or returns it to its previous equilibrium. Let us see how these two options 

make the shape of the time history and phase trajectory. 

Let us rewrite formula (5.36), converting exponents into hyperbolic sine and cosine 

functions. We substitute formulae for eigenvalues (5.36) and arbitrary constants (4.113) 

into the solution (5.36): 

Va

t tpCtCet 1111211 sincoshsinh)(  (5.41) 

112

1

1111
1 and; pC

pp
C  (5.42) 

2

1

2

1 fk  (5.43) 

The expression (5.41) can be presented as a sum of functions. It can be done in two ways: 

expressing the general solution via hyperbolic sine or via hyperbolic cosine:

1211 coshandsinh HCHC  (5.44) 

Hyperbolic cosine form: 

Va

t tpteH 11111 sin)cosh()(  (5.45) 

As a result, the solution at the range 1 looks almost like the solution for range 0 in the 

system (4.107), but there is a hyperbolic function instead of a trigonometric function. 

qa, pa

pa

qa

Fig. 5.8 Response curves of particular solutions on range 0 (qa)

and range 1 (pa).
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New arbitrary constants H and  can be obtained from the equations (5.42) using the 

well-known formulae for hyperbolic functions: 

1

1
11

2

1

2

cosh

sinh
tanhand1sinhcosh  (5.46) 
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1111
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11
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1

1

1
pppH  (5.47) 

111

1111
1 arctanh

p

pp
 (5.48) 

To express the solution (5.41) via hyperbolic sine the following substitution should be 

used:

1211 sinhandcosh HCHC  (5.49) 

Substitution (5.49) allows expression of solution (5.41) in a form of the hyperbolic sine: 

Va

t tpteHt 1111 sin)sinh()(  (5.50) 

New arbitrary constants H and  can be obtained from the equations (5.49) using 

formulae (5.46): 

2

11

2

1

2

1111

1

1
pppH  (5.51) 

1111

111
1 arctanh

pp

p
 (5.52) 

Formulae for arbitrary “amplitudes” H (5.47) and (5.52) differ only by the sign of the 

expression under the square root. Consequently, the hyperbolic cosine and sine forms of 

the presentation of the solution (5.41) cannot exist simultaneously: 

||:sineHyperbolic 1111111 ppp  (5.53) 

||:cosineHyperbolic 1111111 ppp  (5.54) 

Taking into account the above consideration about the small contribution of the particular 

solution of range 1, and the fact that the initial condition for the range 1, 01 m , these 

formulae can be rewritten as: 

||:sineHyperbolic 0110 vmvm  (5.55) 

||:cosineHyperbolic 0110 vmvm  (5.56) 

Let us show that inequality (5.55) corresponds to the condition of capsizing and 

inequality (5.56) to return to previous equilibrium. Taking into account that value 1 is

positive and using formula (5.38) the condition of transition can be rewritten as:  
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 )()( 0101 vmvm  (5.57) 

For positive roll angles 0mV  the right hand term in (5.57) is positive:  

)()( 0101 vmvm  (5.58) 

Inequality (5.57) provides that the left hand term is also positive: 

)()( 0101 vmvm  (5.59) 

The substitution of (5.58) and (5.59) into (5.57) yields (5.53). So the time history of 

oscillation during capsizing might be described by a hyperbolic sine. If there is no 

capsizing during this semi-period of roll, the system returns to its previous equilibrium, 

its return trajectory may be described by a hyperbolic cosine function [Belenky, 1999], 

see fig. 5.9.

Fig. 5.9 Time histories at the vicinity of unstable equilibrium 

The above statement, however, is not strict: there is a “grey area”, when the arbitrary 

constant is very close to zero. In the case of 0A , equation (5.36) indicates that the ship 

experiences periodic motions at the angle of vanishing stability. These periodic motions 

are unstable: small perturbations would break condition 0A , which would result in 

escape from the range 1. 

An example of phase trajectories when evolution when A is nearly equal to 0 is shown on 

fig. 5.10, where some “strange shapes” of trajectories can be observed. The origin of the 

“strange shapes” near the angle of vanishing stability is that usually the shape of the 

trajectory is defined by the term )exp( 1tA ; a small value of A that allows the other 

terms of equation (5.36) to put their contribution into the motion [Belenky and Umeda, 

1997]. That is why we can sometimes see loops at the angle of vanishing stability, as in 

fig. 5.4. 
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Fig. 5.10 Shapes of phase trajectories in vicinity of unstable equilibrium 
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5.3. Nonlinear Dynamics and Capsizing 

5.3.1 General 

Nonlinear dynamics is the most recent development in the theory of oscillators. 

Nowadays, instead of the term “oscillator” we use the term “dynamical system”. This 

change reflects a widening of the applications from mechanical and electrical oscillation 

towards complex processes in physics, chemistry, ecology and many other fundamental 

and applied sciences. Also, this terminological change emphasizes that we no longer limit 

ourselves to periodical processes.

The linear theory of dynamic systems found its most comprehensive presentation in the 

famous work of Rayleigh [1896]. Works of Poincare, Lyapunov and Birkhoff developed 

the theory for nonlinear systems. The well-known book by Andronov, et al [1966] was 

the milestone in the theory for one-degree-of-freedom systems. 

Further development was accelerated with increasing computation capabilities and 

allowed the consideration of dynamic systems with many degrees of freedom, but, as 

usual, interpretation and presentation of computation results was a problem. Geometrical 

methods were the answer. The monograph by Guckenheimer and Holmes [1983] was the 

third milestone and formed Nonlinear Dynamics in its contemporary form. 

Among the many excellent books on this subject, [Thompson and Stewart, 1986] can be 

especially recommended for engineers. It gives simple and visual reviews of major 

nonlinear phenomena and methods of their study. 

Nonlinear dynamics offers the most completed view on any nonlinear dynamic system 

and any nonlinear phenomenon, including nonlinear roll and capsizing. 

5.3.2 Sensitivity to Initial Conditions: Safe Basin 

We have already seen that behavior of a nonlinear system depends strongly on initial 

conditions. Depending on initial conditions, a nonlinear system may choose a high- or 

low-amplitude response if the excitation frequency is in the range where three responses 

are possible.  

A piecewise linear system (4.106) could be used to see the qualitative relationship 

between initial conditions and capsizing. Let us assume that roll motions start within 

range 0 with initial conditions 00 , , initial phase 0 and reach the boundary between 

ranges at the moment t1. We know that capsizing in a piecewise linear system is 

associated with a positive sign for the arbitrary constant (5.36): 

21

11211 pp
A

Here 11,  are values of the roll angle and angular velocity at the moment of crossing. 

The value of the roll angle at crossing is fixed: it is equal to the boundary between 

ranges:

01 m  (5.60) 
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Roll angular velocity is defined by the “previous history” of roll motion at the range 0: 

01

111011100111

cos

,,cos, 1

qa

t

a

tq

tte
 (5.61) 

Arbitrary constants: 00 ,a  and 00 ,  depend on initial conditions 00 , , so the 

value of A and hence, possibility of capsizing depends on these initial conditions. 

The technique for the numerical study of influence of initial conditions is simple. The 

phase plane has to be covered with a grid of initial conditions, each of which are used for 

numerical simulation of forced roll oscillations. Simulations have to last long enough to 

clarify the outcome: capsizing or steady state regime of roll motions. So there are only 

two answers to consider: capsizing or non-capsizing. The result is quite easy to visualize; 

marking in black the point on the phase plane corresponding to initial conditions that do 

not lead to capsizing. If there is a capsizing, the point remains white.  

The area that contains the initial conditions that do not lead to capsizing is called the safe 

basin. Numerical studies of the safe basin were done by Rainey, et al [1990], Nayfeh and 

Sanchez [1990], Rainey and Thompson [1991], Kan and Taguchi [1991, 1992, 1993], 

Kan, et al [1992], Kan [1992], and others. 

The most important fact found is as soon as excitation becomes large enough, the safe 

basin experiences erosion: safe and unsafe conditions are located close to each other, 

forming a very complex picture, Fig. 5.11. 

Fig. 5.11 Fractal erosion of safe basin (after Kan, et al [1992], black area corresponds to safe initial 

conditions, white area corresponds to capsizing) 

Close examination of this picture reveals fractal structure of erosion of the safe basin. 

Fractals are geometrical figures recurrently repeating themselves, see a sample fractal in 

fig. 5.12.
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The piecewise linear system also demonstrates erosion of the safe basin at high levels of 

excitation [Belenky, 2000a]. 

It is obvious that erosion of the safe basin increases changes to capsizing. Rainey and 

Thompson [1991] proposed to use the safe basin as a stability criterion for given wave 

parameters, see also Rainey, et al [1990], Soliman [1990]. Rainey and Thompson [1991] 

plotted the area of the safe basin versus wave height and found the threshold where the 

safe basin suddenly erodes, fig 5.13. 

Fig. 5.12 Sample fractal 

Fig. 5.13 Normalized area of the safe basin versus normalized excitation amplitude 

This threshold or critical wave height is also called capsizial resistance. Repeating this 

calculation for different situations, for example changing position of the ship relative to 

waves, initial heel, period of wave, etc., Rainey and Thompson [1991] built a transient 

capsize diagram. 

The transient capsizing diagram has the capability to take into account many important 

factors and might be a good background for new stability criterion [Vassalos, 1994]. 
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5.3.3 Concept of Invariant Manifold 

The phenomenon of fractal erosion of the safe basin requires a physical explanation. In 

order to present it, we have to introduce the concept of invariant manifold. 

We introduced the concept of separatrix in subchapter 5.1.1 as a special phase trajectory 

that separates different areas of attraction in the roll equation (5.1). That equation 

described roll without excitation, so it was a homogeneous dynamic system. Invariant 

manifold is a generalization of separatrix for the case with excitation (heterogeneous 

dynamic system). So the separatrix is a particular case of the invariant manifold when 

there is no excitation. 

First let us see what the words “invariant manifold” mean. “Manifold” generally means a 

subspace with dimensions less than n. A line is a manifold for a plane, a plane a manifold 

for 3-D space, etc. However, it is not necessary that the manifold of n dimensional space 

has n-1 dimensions, it is enough that it just has less dimensions than the original space. A 

line is a manifold for a 3-D space too. 

Why is it “invariant”? Actually, the phase plane does not give complete information of 

the state of the system with excitation. To describe such a system state completely, we 

need one more coordinate: current phase of excitation. Phase plane for the excited system 

is just a projection, so almost all phase trajectories depend on phase of the excitation. The 

only exception is the boundary between different areas of attraction – phase trajectory 

that leads towards (or in opposite direction from) unstable equilibrium. That is why this 

boundary is called the “invariant manifold”, for more information see the monograph by 

Guckenheimer and Holmes [1983]. 

Generally, it is more convenient to use for an excited system a Poincare map rather than a 

phase plane, because we can delete one dimension. As we have seen from subchapter 

4.4.3, the steady state regime (limit cycle) maps itself into one point (fixed point).

Similar to the separatrix, the invariant manifold has two branches: one leads toward 

unstable equilibrium another one leads in opposite direction. The branch that tries to take 

the system to unstable equilibria is called “stable invariant manifold”, the other branch is 

named “unstable invariant manifold”. Similar to the separatrix, only the stable invariant 

manifold is a boundary between two areas of attraction. Fig. 5.14 shows a sample of a 

Poincare map with two fixed points (steady state motion regimes) around normal and 

capsized equilibria positions, unstable equilibrium and both branches of the invariant 

manifold. 

Similar to the separatrix, the invariant manifold is tangent to the eigenvectors at unstable 

equilibrium, which is a saddle point in our case. (The proof can be found in a monograph 

by Guckenheimer and Holmes [1983].)  

Calculation of the invariant manifold for the roll equation only does not differ much from 

the procedure for the separatrix. First, we calculate eigenvectors for the saddle point at 

the angle of vanishing stability. These eigenvectors will provide the directions of initial 

displacement, similar to (5.10-12). Using these initial points, we integrate the equation in 

inverse time for the stable invariant manifold and in direct time for the unstable one. 

Since we are working with a Poincare map, only one point per excitation period is used. 

As a result, the invariant manifold leaves a trace of points on the Poincare map. If these 
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points are not sufficient to clarify the character of the curve, the initial phase of excitation 

has to be changed and all the calculations have to be repeated starting from the same 

initial conditions.

Fig. 5.14 Invariant manifolds on Poincare map. (Solid line – stable invariant manifold, dashed line – 

unstable invariant manifold) 

The sample of the invariant manifold in fig. 5.14 has just one fixed point (steady state 

motion regime) at safe basin. As we have seen in subchapter 4.5.2 there is a frequency 

range where three steady state regimes exist. This would make three fixed points on a 

Poincare map. From the previous study we know that two of them are stable and one, 

which is in the middle, is unstable. We also mentioned that the choice of the stable steady 

state mode depends on initial conditions and we promised to address the problem of how 

to separate these initial conditions. 

There is quite an evident similarity between equilibrium and steady state mode (fixed 

point) on a Poincare map. Both these figures attract motion if they are stable and repel it 

if they are unstable. We have seen from Chapter 4 that their stability is defined in a very 

similar way: through the eigenvalues. This similarity extends for invariant manifolds. 

The procedure for calculating the invariant manifold for an unstable fixed point (unstable 

steady state regime) is the same as that for the unstable equilibrium. First, the 

eigenvectors corresponding to eigenvalues for the Jacobean matrix in formula (4.196) 

have to be calculated. Then, initial conditions have to be evaluated using equations (5.10-

12). Finally, the stable invariant manifold can be calculated by numerical integration of 

the roll equation in inverse time and the unstable invariant manifold might be obtained by 

integration in “normal” time. The stable invariant manifold divides the safe basin into 

two areas of attraction for each stable steady state regime of motion. The sample of the 

Poincare map with three fixed points is shown in fig. 5.15. 
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Fig. 5.15 Invariant manifolds on Poincare map for three-amplitude response. (Solid line – stable 

invariant manifold, dashed line – unstable invariant manifold) 

Now we can observe the fold bifurcation on a Poincare map [Falzarano, et al, 1995]. The 

procedure is almost the same as that described in subchapter 4.5.2. Excitation frequency 

is our control parameter. We change it from zero and observe changes in behavior, see 

fig. 5.16.

Before we reach the frequency corresponding to points A and D on the response curve at 

fig. 5.16, we have only one steady state solution and our Poincare map has only one fixed 

point in the vicinity of upright equilibrium (as in fig. 5.14).  

As soon as we reach the frequency that corresponds to points A and D, we have the 

second fixed point. Further increasing of frequency makes this new point to bifurcate into 

two fixed points. One of these points corresponds to high amplitude response (which may 

be stable), another to middle amplitude response (which is always unstable). Together 

with low amplitude response (which is stable) we have three fixed points and our 

Poincare map now is similar to fig. 5.15. 

However, the possibility to observe only two fixed points is theoretical, because there is 

just one frequency that provides such a picture. Since all our calculations are 

approximate, we cannot obtain exactly this result, however we can be quite close. It 

means that we get three points anyway, but two of them are very close. 

A further change of frequency leads to movement of the unstable fixed point (which 

corresponds to unstable mid-amplitude response) towards the stable fixed point, which 

corresponds to stable low amplitude response. When the frequency reaches the values 

corresponding to points B and C on the response curve, unstable and low amplitudes 

merge and disappear. As a result, only one fixed point, which corresponds to high 

amplitude response, can be observed.  
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We already mentioned about the similarity between fixed points on a Poincare map and 

equilibria in the phase plane. Here we see one more aspect of this similarity: the structure 

of motions around an unstable fixed point is almost identical to unstable equilibrium: that 

is why we could consider it as a saddle point on a Poincare map. Analogously, a stable 

fixed point can be considered as a stable focus on a Poincare map. 

Fig. 5.16 Evolution of areas of attraction in three-amplitudes response zone 

5.3.4 Invariant Manifold and Erosion of Safe Basin. Melnikov Function
1

Now, let’s choose another control parameter – amplitude of the excitation and check its 

influence on the invariant manifold calculated for unstable equilibrium at angle of 

vanishing stability [Falzarano, et al, 1992]. For small amplitude excitation, both stable 

and unstable invariant manifolds are quite similar to the separatrix for damped non-forced 

roll, see fig. 5.17a.

An increasing in the amplitude leads to a drastic change: the stable invariant manifold 

originating from positive angle of vanishing stability intersects with the unstable 

invariant manifold originating from negative angle of vanishing stability, fig. 5.17b. 

Once, at least one intersection occurs, there will be an infinite number of intersections 

[Falzarano, et al, 1992], [Moon, 1987]. Baker and Gollub [1996] offered a quite simple 

and visual explanation of this phenomenon.  

An infinite number of intersections of manifolds  might make two neighboring points 

belong to two different areas of attraction. So, we observe fractal erosion of the safe 

                                                          
1 The author is grateful to Prof. Falzarano for fruitful discussion of the materials of this subchapter. 
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basin. Such a picture has a specific name: it is called a “heteroclinic tangle”. Heteroclinic 

means that manifolds come from different saddle points (from the Greek word 

heteros – different, distinct). 

Besides the explanation why the safe basin experiences erosion, the above provides us 

with a powerful numerical tool. It is not necessary to perform complex calculations as 

was described in subchapter 5.3.2, it is enough to calculate the stable invariant manifolds 

from positive angle of vanishing stability and the unstable invariant manifold from 

negative angle of vanishing stability (or vice versa). If they have intersected at least once, 

we observe erosion of the safe basin. In other words, this amplitude of excitation is too 

high for this particular GZ curve i.e. the ship is unsafe for this particular wave [Falzarano, 

et al, 1992]. 

Fig. 5.17 Change of shape of invariant manifolds with increasing amplitude of excitation 

Moreover, there is an approximate analytical solution for the distance between stable and 

unstable invariant manifolds. It is called the “Melnikov function” and the technique of the 

derivation is usually called the “Melnikov method”.  

The Melnikov method can be applied to any dynamic system that can be presented as: 

),()( tYGYFY  (5.62) 

With 1 is a small perturbation. The vector-valued function )(XF  here does not 

depend on time, so the unperturbed system (when 0 ) is homogeneous:  

)(YFY  (5.63) 

Perturbation ),( tYG  is periodic. Falzarano, et al [1992] considered damping and 

excitation to be small quantities in comparison with other terms; a similar assumption is 

known to work quite well for perturbation methods (see subchapter 4.2). Also, following 

the above reference we rewrite our general system (3.270) in non-dimensional time 

t  (we have used a similar procedure in subchapter 5.1.1): 

EE tf sin)(2 2

a) b)
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With the following dimensionless quantities: 
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E
E  (5.65) 

Converting the system (5.64) into vector form (5.62): 
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 (5.66) 

With: 

00 ;EE  (5.67) 

As we did before, we use a cubic approximation for the GZ curve: 

3

3)( af  (5.68) 

Note that coefficient a3 does not have to be small here. The Melnikov function for the 

system (5.62) is defined by the following integral: 

dGPM 00 ),()()(  (5.69) 

Where  is the invariant manifold defined by formulae (5.8) (positive value of 

provides the unstable invariant manifold and negative values of  yield the stable 

invariant manifold). The vector-valued function )(P  is perpendicular to the vector 

valued function )(F :

 0)()( FP  (5.70) 

Operation of multiplication implies a scalar product of vectors in equations (5.69) and 

(5.70). The integral (5.69) can be evaluated analytically [Falzarano, et al, 1992]: 
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The approximate distance between the stable and unstable invariant manifolds is related 

to the Melnikov function (5.71) as [Falzarano, et al, 1992; Guckenheimer and Holmes, 

1983] (with the accuracy of 
2
):

)(

)(
)(

0

0
0

F

M
d  (5.72) 

With )( 0F  means length of the vector valued function )( 0F  defined at the 

moment 0.

We are actually interested in whether these invariant manifolds have intersected or not, 

which means we are interested if the Melnikov function ever crosses zero. The value of 

excitation amplitude that satisfies this condition is given by Falzarano, et al  [1992]: 

2
cosh3

2

3

0

a

Cr  (5.73) 

Formula (5.73) provides us with the critical excitation amplitude, when erosion of the 

safe basin begins. 

Another phenomenon associated with erosion of the safe basin is chaotic response that 

we have observed in subchapter 4.5.3. Further exploration about this relationship can be 

found in [Baker and Gollub, 1996]. 

5.3.5 Loss of Motion Stability and Capsizing 

We already considered stability of steady state roll motion in subchapter 4.4 and 

reviewed several major methods to define the motion stability. We were mainly focused 

on the methods that were able to provide us with eigenvalues, since eigenvalues were 

later used as the indicator of what is going to happen to roll motion when the motion 

stability is lost. We have seen two different types of behavior: jump to high amplitude 

response (fold bifurcation) and period doubling (flip bifurcation). The last one is the way 

to deterministic chaos (subchapter 4.5.3). As we have mentioned in the subchapter 5.3.4, 

chaotic response corresponds to erosion of the safe basin, which increases chances of 

capsizing.

There are several works aimed on applications of motion stability theory for the study of 

capsizing. Their ultimate goal was developing ship stability criterion based on roll motion 

stability. Let us give them a brief review. 

We already mentioned works by Martin, et al [1982], Phillips [1986, 1986a], Caldeira-

Saraiva [1986, 1986a], which were focused on the Lyapunov direct method (see 

subchapter 4.4.1).

Wellicome [1975], Wright and Marshfield [1980], Nayfeh and Khdeir [1986, 1986a], 

Nayfeh and Sanchez [1990] applied the Floquett theory to capsizing analysis; we have 

considered it in detail in subchapter 4.4.2. 
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Application of the Floquett theory allows us to solve a variation equation for a given 

particular case and to judge the motion stability. However, the solution is not always 

necessary, because some of the practical cases lead to the well-known Mathieu equation 

(see also subchapter 11.1.2 of [Kobylinski and Kastner 2003]) or to the more complex 

Hill equation.  

The Mathieu equation is linear ordinary differential equation with periodic coefficients: 

( cos )p q t 0  (5.74) 

The character of the solution of the Mathieu equation (5.74) depends on parameters p and 

q. A diagram, where areas of bounded and unbounded solutions of the Mathieu equation 

are shown, is called an Ince-Strutt diagram, see fig. 5.18. This diagram allows us to check 

if the solution is bounded or not, and, consequently if our steady state motion is stable or 

not.

Fig. 5.18 Ince-Strutt diagram. (The diagram is symmetric relative to the abscissa, filled areas 

correspond to bounded solutions) 

Ananiev [1981] used a more complicated equation, which is called the Hill equation. The 

Mathieu equation is a particular case of the Hill equation. A general view of the Hill 

equation is the following: 

 0))(( tc  (5.75) 

Here: (t) is a periodic function.

Analogously to the Mathieu equation, the Hill equation has several areas where the 

solution is unbounded. Ananiev [1981] considered the first area of instability, because it 

is located in the region of main resonance, fig. 5.19. If amplitude of the excitation value 

is larger, it is possible to observe the area of instability of the zero order. The appearance 

of the response curve with both areas is shown in fig. 5.20.
1

It is important to note that there are some frequency gaps where steady state oscillation is 

unstable. As we already know these gaps are due to period doubling or flip bifurcation. 

As we previously discussed, it does not necessarily mean immediate capsizing, but it is 

quite clear an indication of advancing danger. 

                                                          
1 Response curves in fig. 5.19 and 5.20 were evaluated for roll equation in relative coordinates (3.274). 
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Fig. 5.19 Response curve with area of instability. E /  =0.05 

Fig. 5.20 Response curve with areas of instability. E /  =0.10 
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Chapter 6 

Capsizing in Regular Following and Quartering Seas 

6.1 Variation of the GZ Curve in Longitudinal Waves. Pure Loss of Stability 

6.1.1 Description of Phenomenon 

Most vessels designed to sail with medium speed and above have a relatively narrow hull 

below the waterline to decrease drag and improve flow around the propeller. If the vessel 

is intended to transport light cargo, host people or equipment, additional space can be 

added by using such elements as a flared bow and stern overhang. Flared bow also may 

be useful to decrease greenwater shipping and protect fore part of the deck from spray.  

When a crest of a relatively long wave (more precisely when wave length is comparable 

with the length of the ship) is located near the midship section, troughs of this wave may 

be near the fore and aft parts of the vessel, where the hull is narrow. This situation results 

in the waterline that is narrower that it would be in calm water (see fig. 6.1).

 When a trough of a long wave is located 

near the midship section, the flared bow 

and stern overhang may be submerged as 

the crests of this wave may be located 

there, see fig. 6.1. 

As a direct consequence of this 

combination of wave location and hull 

geometry, the waterline is wider when 

the wave trough is located near 

amidships and narrower when the wave 

crest is about amidships, see fig. 6.1.

The righting moment is dependent on the 

width of the waterline. As a result, 

stability changes when the ship is located 

in longitudinal waves comparable with 

ship length: it is better when the midship 

section is located near the wave trough 

and it is worse when the midship section 

passes the wave crest (see also 

[Kobylinski and Kastner 2003]). 

Changing stability from wave trough to wave crest is also known as the wave pass effect. 

Fig. 6.1 Variation of the GZ curve in longitudinal 

waves 
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6.1.2 Methods of Calculations

The GZ curve is a lever of the restoring moment that counteracts another moment created 

by an external force acting in a transverse direction. The restoring moment is created by 

pressures applied all over the submerged part of the hull and there is a result of the 

surface integration of these pressures. 

Hydrodynamic forces and moments as a result of pressure integration were considered in 

subchapters 3.4 and 3.5. Here, components of pressures are principally the same, but 

assumptions of small motions and zero speed are no longer applicable: 

Hydrostatic pressures; 

Pressures in a wave without accounting for presence of the vessel – Froude-Krylov 

hypothesis;

Pressures caused by wave diffraction on a ship, since the ship is an obstacle for wave 

propagation;

Pressures caused by waves generated by periodic ship motions: ship motions are 

affected by wave damping; 

Pressures caused by waves generated by forward heading: it is a wave component of 

the resistance; 

Pressures caused by non-potential flow, including vortices and boundary layer. 

Pure hydrostatic calculation assumes that GZ curve variations are only due to changes of 

submersed volume: it means that we only take into account the fact that the waterline is 

no longer a plane [ABS 2004, Shin, et al 2004]. Calculation of GM is relatively easy and 

can be preformed in a spreadsheet: 
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 (6.1) 

The formulae (6.1) are written for the wave length and wave height hw; dC  is the draft 

at each station when the wave crest is located at a distance xC from the origin of the 

coordinate system, NC is the number of wave to be considered, x is abscissa of a station, 

NSt is the number of stations included in the calculations, dm is a draft amidships, y(x, xC)

is the half beam at each station for the wave crest position at xC.
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Ix(xC) is the moment of inertia of the area of the waterplane for the wave crest position at 

xC;  is the submerged area of each station while  and M  are volumetric displacement 

and vertical static moment. Other values in the formulae (6.1) follows conventional ship 

hydrostatic notation: VCB - the vertical position of the center of buoyancy and BM –

metacentric radius. All the above values are calculated for wave crest position at xC.

Despite GM value does not provide complete information on stability in waves, formulae 

(6.1) could be used for initial assessment on how strong wave pass effect may be for this 

particular vessel. 

Complete calculation of GZ curve was implemented by program EUREKA. A 

description of the method is available in [Paulling 1961]. The current version of 

EUREKA has an option to include a correction for “Smith effect” – the changes of 

pressures in a wave using Froude-Krylov hypothesis. 

More elaborate calculations of wave pass effect are available from time domain potential 

solvers. One of them is FREDYN, a potential time-domain code based on strip theory [de 

Kat and Paulling, 1989] that includes other types of forces based on systematic model 

test, developed by CRNAV
1
 (see also see de Kat et al [1994], de Kat and Thomas [1999, 

2000]). GL SIMBEL is another time-domain potential code based on strip theory, 

[Brunswig, et al 2006]. LAMP (Large Amplitude Motion Program
2
) is potential time 

domain code based on panel method [Lin and Yue, 1990, 1993] with capability to include 

forces of other physical natures.

Solution of a potential flow problem through a time-domain code allows including 

pressures caused by diffraction, radiation and ship generated waves in addition to 

hydrostatic and Froude-Krylov-related pressures into calculation of restoring moment in 

waves. Including the forces of a viscous and a vortex nature would require use of CFD or 

model-test based data.

In conclusion, we give a brief review of theoretical and experimental works that did not 

get a proper circulation in English language literature. 

First of all, we have to reference two special monographs by Nechaev [1978] and by 

Boroday and Netsvetaev [1982] that contain profound reviews of this kind of research. 

Boroday [1967], Boroday and Netsvetaev [1969, 1982] studied hydrodynamic and 

hydrostatic components of the GZ curve changes. Lugovsky [1966] tackled this problem 

from the point of view of hydrodynamic theory of ship motion and used parabolic 

approximations of ship lines. 

Nechaev [1978, 1989] developed the method based on model tests in a hydrochannel at 

the Kaliningrad Institute of Technology. Since inverse motion was used, no limitation on 

towing tank length existed. An obstacle on the bottom of the hydrochannel created the 

wave. Results of these experiments were presented in a form of regression polynomials. 

Using these polynomials, it is possible to estimate GZ curves on the wave crest and at the 

                                                          
1 Cooperative Research Navies consortium (www.crnav.org).  

2 LAMP was developed by SAIC (Science Application International Corporation) under sponsorship from 

US Navy, US Coast Guard, ABS and SAIC. 
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wave trough, if the length of wave is not very different from the length of the ship. The 

method is described in Appendix. 

6.1.3 Pure Loss of Stability 

As the restoring moment may be significantly decreased while the wave is located about 

the midship section, a vessel may suffer from large roll angles or even capsizing, if she 

spends enough time in the situation of decreased stability.  Capsizing caused by pure loss 

of stability in wave crest in following was observed by Paulling et al [1972, 1974, 1975] 

during experiments in San Francisco Bay, see also Kobylinski and Kastner [2003].  

Timing may be the critical factor for pure loss of stability. Therefore consideration of 

surging and surf-riding may be an important part of analysis for pure loss of stability. We 

shall return to this problem in subchapter 9.3. 

Pure loss of stability caused by variation of righting arm in waves is considered as one of 

the modes of stability failures in near longitudinal seas along with parametric resonance 

that will be addressed in subchapter 6.2.

6.1.4 Equation of Roll Motions 

For the purpose of further study, we assume that all elements of the GZ curve are 

changing according to the cosine function while a wave is passing by. This is not 

completely accurate, but such an approximation can simulate essential ship behavior 

caused by variations in the GZ curve in following and quartering seas:

tGZGZtGZ
EAm

cos)()(),(  (6.2) 

Here, E is the encounter frequency caused by the ship heading: 

cos
2

v
g

E  (6.3) 

Where  is the course of the ship relative to the waves. 

The mean value of the GZ curve, GZm( ) does not necessarily coincide with the GZ curve 

calculated for calm water. The dependence of the GZ curve on wave position is not 

symmetric; see fig. 6.1. The formula for the variation of the GZ curve in waves (6.2) 

gives the following equation of roll in following seas: 

0)cos)()((2
44

tGZGZ
aI

mg
EAm

xx

 (6.4) 

Where m is mass of the ship. Assuming GZA to be constant and introducing a cubic 

approximation for the GZ curve we obtain the following roll equation : 

0)cos1(2 3

3

2 ata Epm  (6.5) 

Here ap is an amplitude of parametric excitation, determined from the variation of the GZ

curve, frequency m corresponds to initial part of mean GZ curve - GZm. Expression (6.5) 

is a nonlinear equation with a periodically changing coefficient. It is the subject for the 

next subchapter. 
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6.2 Parametric Resonance 

6.2.1 Description of Phenomenon 

The parametric resonance is caused by parametric excitation that is periodic changes of 

the coefficients in the roll equation (see also [Kobylinski and Kastner, 2003]). One 

possible reason of such changes, we have just discussed in subchapter 6.1, is GZ curve 

variation in longitudinal seas, see equation (6.5). Parametric resonance caused by this 

variation is also called low cycle resonance. It has been studied beginning in the 1950’s: 

[Grim, 1952; Basin, 1953; Kerwin, 1955; Paulling and Rosenberg, 1959; Paulling, 1961]. 

Interest in parametric roll resonance caused by wave pass effect was renewed after the 

case of heavy roll of a post-Panamax containership in near head seas [France, et al 2003]. 

We will return to this case in subchapter 8.4.4. 

It can be seen from the investigation described by France et al [2003] that wave pass 

effect is capable of generating large roll angles.

Assume that a vessel is sailing exactly in longitudinal regular waves. Once she reaches 

wave crest, a transverse heeling moment is applied causing an initial roll angle and/or roll 

velocity. When a vessel is at the position “wave crest amidships”, her stability is 

decreased. As the restoring moment is less, a vessel will roll further than she would in 

calm water. When the amplitude angle is reached the wave trough reaches the midship 

section and stability increases.  The larger restoring moment means a larger acceleration 

and the vessel returns to zero-angle with the velocity larger than she would in calm water. 

Meanwhile a new wave crest reaches the midship section, stability is decreased and the 

vessel rolls even further. 

As a result, energy is added every quarter of a period, when stability is decreased, 

additional potential energy is collected; while stability is increased additional kinetic 

energy is being picked up. This simple description shows why a frequency ratio 2:1 is the 

most favorable for development of parametric resonance (principal parametric 

resonance). It should be also clear that the parametric resonance is possible for other 

frequency ratios. For the frequency ratio 1:1 energy is being added every half a period 

(fundamental parametric resonance).

Other causes for parametric excitation are coupling between roll and pitch and between 

roll and heave. Despite the evident difference between these sources of parametric 

excitation, the outcome is the same: a significant increase in roll motion in longitudinal or 

quartering seas where wave excitation is small. The phenomenon is described by the 

same roll equation with a periodic coefficient, such as (6.5). The only difference is how 

to determine the amplitude of the parametric excitation from variation of the GZ curve in 

longitudinal seas as in subchapter 6.1 or from coupling between roll and heave or pitch. 
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6.2.2 Parametric Resonance in Linear System. Mathieu equation 

We start from the linear equation of roll with parametric excitation, simply by dropping 

the nonlinear term in (6.5). Let us consider the system without damping first, 0 :

0cos12 ta pm  (6.6) 

Here ap is an amplitude of parametric excitation, determined from the variation of the GZ

curve or from coupling of roll with heave or pitch.  is a frequency of parametric 

excitation that has a practical meaning of encounter frequency defined by equation (6.3).

The following substitutions transform (6.6) into a more simple form: 

2
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qpt  (6.7) 
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2

qp
d

d
 (6.8) 

This is known as the Mathieu equation. We already mentioned in subchapter 5.3.5. There 

are two possible behaviour types of the solution: the bounded and unbounded type. The 

unbounded solution of equation (6.8) corresponds to a case of parametric resonance. 

Examples of bounded and unbounded solutions are shown in fig. 6.2. 

Fig. 6.2 Bounded (a) and unbounded (b) solution of Mathieu equation 

The Mathieu equation has only two parameters, so it is convenient to show conditions 

corresponding to bounded (stable) or unbounded (unstable) solutions on a plane with 

coordinates p and q. It is also called the Ince-Strutt diagram; see fig .5.4. 
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Let us start the review of this diagram for the case when the amplitude of parametric 

excitation equals zero, 0q  [Magnus, 1976]. In this case equation (6.8) no longer has a 

periodic coefficient: 

0
2

2

p
d

d
 (6.9) 

The solution of this equation is well known. (We discussed solutions of this equation 

with damping in subchapters 3.5.6 and 4.3):  

0)cos(

0)exp()exp( 21

ppA

ppCpC
 (6.10) 

Where C1, C2, A and  are arbitrary constants. It is evident that the first solution in (6.10) 

is unbounded and the second one is bounded and periodic. This is actually shown in the 

diagram on fig. 5.18. All the solutions for negative p when 0q are unbounded. All the 

solutions for positive p are bounded. 

Now let us start increasing q. We see more zones for unbounded solutions starting at the 

following values of p:
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p  (6.11) 

Widths of these zones of instability decrease with increasing p, so only the first and the 

second zones have practical importance. Oscillations in the first zone usually are called 

“Principal Parametric Resonance”; oscillations in the second zone are called 

“Fundamental Parametric Resonance”.  

The boundaries of these zones can be approximated for small values of q. Linear 

formulae for the first 5 boundaries are below [Magnus, 1976]: 
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Let us consider the case with damping: 

0cos12 2 tap  (6.13) 

Introduction of non-dimensional time = t, non dimensional damping coefficient 

/  and substitution exp)()( x  lead to Mathieu equation (6.8): 

0)cos(
2

2

xqp
d

xd

Definitions for frequency parameter is slightly different here:  
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2

2

2

mp

The detailed derivation is described by Shin, et al [2004]. Damping does not have a large 

influence on stability or instability of solutions. The only difference is that instability 

zones no longer touch the horizontal axis [Hayashi 1953]. This creates a certain threshold 

for amplitude of parametric excitation. If the amplitude is less than this threshold, 

unbounded parametric oscillations would not be generated, as the energy from parametric 

excitation cannot accumulate in the dynamical system: it is being dispersed by damping.

The bounded or stable solution of the Mathieu equation asymptotically tends to zero now. 

The unbounded solution of the Mathieu equation still tends to infinity. So the solution 

with p and q exactly corresponding to the boundary between zones has to be periodic. 

Also, we can consider the case for quartering seas by introducing the excitation into the 

equation (6.13): 

tta Ep coscos12 2  (6.14) 

It has been shown that the equation (6.14) has the same domains of stability as the 

equation (6.12) [Rosenberg, 1954; Roberts, 1980a; Skomedal, 1982].  

It means that the Ince–Strutt diagram may be enough to predict the rise of parametric roll 

motions; it is actually used for ABS susceptibility criteria [ABS 2004] that allow 

determination if a vessel with a particular hull geometry and speed capability may be 

vulnerable for parametric roll resonance in head or following waves. Derivation and 

validation of the ABS susceptibility criteria is described by Shin, et al [2004].

6.2.3 Parametric Resonance in Nonlinear System 

Linear theory does not allow one to find the amplitude of roll motion in parametric 

resonance mode: there is no stabilization of parametric oscillation in the linear system. 

Once the nonlinearity of restoring is introduced, the dynamical system can be stabilized 

at a certain amplitude. The nonlinear restoring term makes the instantaneous natural 

frequency to change, so sooner or later it will take the system out of range of parametric 

resonance and, therefore, limit flow of energy from parametric excitation into the 

dynamical system. Once energy balance is reached the steady state mode of motion is 

established.

Consider equation (6.5): 

 0)cos1(2 3

3

2 ata p

Here symbol  is used in a generic sense; it does necessarily mean natural frequency in 

calm water, rather a frequency corresponding to a mean restoring moment in waves. 

Equally, symbol could have a meaning of encounter frequency. 

Following Sanchez and Nayfeh [1990] we solve this equation using the method of 

multiple scales (see subchapter 4.2.4 for a detailed explanation of the method). 
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First, we look into the principal parametric resonance (which corresponds to the first zone 

of instability on the Ince-Strutt diagram at fig. 5.18). The encounter frequency is 

supposed to be close to twice the natural frequency: 

22

4

1
 (6.15) 

Where  is a bookkeeping parameter; it is small. Other coefficients of the equation (6.5) 

are presented as:

03030 ;;; ppEE aaaa  (6.16) 

The solution is searched in the following form: 
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T0, T1 and T2 are different time scales. They correspond to a different order of expansion: 

tTtTtT 2

210 ;;  (6.18) 

Now, instead of one independent variable time t, we have three. Time derivatives can be 

expressed through partial derivatives by new independent variables: 
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With D
T

i

i

 is a partial derivative operator.

After substitution of solution (6.17) into equation (6.5) and taking into account (6.18) and 

(4.19), we obtain a system of differential equations, each of which corresponds to certain 

power of  We limit ourselves to the first expansion, a more accurate solution is 

available from [Sanchez and Nayfeh, 1990]: 
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We search for the first expansion solution in the following form: 

CCTiTA 010
2

1
exp)(  (6.22) 

Here CC is a complex conjugate term. We assume that amplitude A(T1) is a function of 

the first order of time scale. Substitution of (6.22) into (6.21) yields: 
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It is enough for elimination of the secular terms to require: 
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It is a differential equation, with unknown function A(T1). The following form is used for 

the solution of the differential equation (6.24): 

)](exp[)(
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1
)( 111 TiTcTA  (6.25) 

Substitution of (6.25) in (6.24) and separation of the real and imaginary parts gives the 

following system of differential equations: 
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 (6.26) 

Since a steady state solution is required (subchapter 4.2.4), then derivatives of c and 

should be equal to zero; this condition transforms the system of nonlinear differential 

equations (6.26) into the following system of nonlinear algebraic equations: 
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The first equation of the system (6.27) obtains the formula for phase :
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Using formula (6.28), it is easy to express 2cos , since: 
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 (6.29) 

Substitution of expression (6.29) into the second equation of the system (6.27) yields the 

formula for amplitude: 
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Formally, we have three solutions for the amplitude, since the second equation is of the 

third order. Since the amplitude is a positive value, we ignore the negative solution. So, 

only two solutions remain, one of them equals zero. This is also a legitimate steady state 

solution, but it is called “trivial”.  

In order to get the final formula for non-trivial amplitude, we substitute equation (6.15) 

into (6.30), assuming 1:
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There are two important outcomes from the formula (6.31). First, it is very clear now that 

nonlinearity keeps the amplitude limited, decreasing nonlinear coefficient a3 leads to an 

increase of the amplitude, while the linear system has an infinite amplitude: 

c
a 03

lim  (6.32) 

Secondly, formula (6.31) gives a threshold for rise parametric oscillations: it is derived 

from the condition:  

064 222

pa  (6.33) 

The threshold amplitude of the parametric excitation can be expressed as: 

8Tr

pa  (6.34) 

Also, it can be clearly seen that, if damping equals zero, there is no threshold for the 

parametric excitation.  

However, all these formulae (6.28), (6.31) and (6.34) are only approximations and the 

exact values may be slightly different. For more precise calculations, use a solution of the 

second expansion [Sanchez and Nayfeh, 1990] or use a numerical method. An 

approximate solution is still useful as in the last case, since it would provide the nearly 

steady state initial conditions. 

Sanchez and Nayfeh [1990] considered fundamental parametric resonance looking for the 

solution in the vicinity of the natural frequency: 

22 , (6.35) 

The procedure for the derivation of the solution is similar to the one above. The only 

difference is that here we cannot limit ourselves by the first expansion, since the secular 

term does not contain the amplitude of parametric excitation, so the second expansion is 

necessary (the technique of the second expansion is described in subchapter 4.2.4). 

The resulting system of nonlinear algebraic equations is given below (compare the terms 

with an analogous system for external excitation (4.90)): 
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Values of amplitude c and phase  have to be calculated numerically from the system 

(6.36). The steady state solution is expressed as [Sanchez and Nayfeh, 1990]: 
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Both responses are shown in fig. 6.3. 

Further analysis of nonlinear equations 

does not differ from what we considered 

for the system with external excitation in 

Chapter 4. After a steady state solution 

is obtained and its stability evaluated, 

bifurcation analysis follows.  

One can see from fig. 6.3 that the 

amplitude of roll response is equal to 

zero (trivial solution) outside of 

fundamental and principal parametric 

domains. Following Sanchez and 

Nayfeh [1990] we decrease frequency 

and reach the point T1 where the trivial 

solution loses its stability and principal 

parametric resonance occurs. The 

amplitude increases until we reach the point S. Here we meet flip (period doubling) 

bifurcation, and then chaotic mode takes place. Finally, capsizing occurs at point J1.

The trivial solution becomes stable at point T2 and then keeps its stability until point T3 is 

reached where fundamental parametric resonance is encountered. The fundamental 

resonance response remains stable up to the point P where period doubling bifurcation 

takes place, that leads to chaos and then to capsizing at point J2. The trivial solution 

becomes stable again at point T4.

A nonlinear system with parametric excitation has basically the same properties that a 

nonlinear system with external excitation. Chaotic response is associated with fractal 

erosion of the safe basin and an infinite number of crossings between stable and unstable 

invariant manifolds, similar to what we have seen in subchapter 5.3, see Sanchez and 

Nayfeh [1990], Kan, et al [1992], Kan [1992], Esparza and Falzarano [1993]. 

Comprehensive study of parametric roll with analytical methods was performed by Neves 

and Rodríguez [2006]. 

Fig. 6.3 Fundamental and principal parametric 

response in following seas [Sanchez and Nayfeh, 

1990]
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6.3 Surf-Riding in Following Seas 

6.3.1 General 

Another capsizing mode, associated with following and quartering seas is surf-riding and 

consequent broaching. Large following waves acting on the ship can force her to move 

with the same speed - the ship begins to move with the wave simultaneously. This 

phenomenon is called surf-riding. The majority of ships are directionally unstable during 

surf-riding so the ship may experience an unsteered turn to a beam position relative to the 

waves. Such uncontrolled turning is known as broaching. Broaching is dangerous 

because of the occurrence of significant heel angles caused by circulation and wave 

heeling moment usually acting in the same direction. 

The first systematic research of surf-riding and broaching was carried out in the 1960’s 

by Du Cane and Goodrich [1962], Wahab and Swaan [1964], Ananiev [1966] considered 

surf-riding as loss of motion stability of surging. Makov [1969] (see also [IMO, 1969a]) 

considered changing topology of the surging phase plane while gradually increasing the 

nominal Froude number. These two works appeared to be ahead of their time and actually 

receive less circulation than they deserved. It is especially true about the last work: 

contemporary consideration of surf-riding employs almost the same technique, however 

nowadays it is based on a solid foundation of nonlinear dynamics. 

6.3.2 Forces and Equation of Motions 

Let us consider the surging equation in pure following seas crest: 

)()( 11 tFRXam XEpG  (6.38) 

Here Xp - propeller thrust, R - resistance in calm water, FXE(t) - wave excitation force. The 

physical reason for the wave excitation is pressure pulsation caused by wave motion. We 

consider it in detail, in order to reveal its dependence on time: the wave elevation in fixed 

coordinate system is expressed as follows: 

 )cos()( tkt AwW  (6.39) 

Here
Aw

 is the wave amplitude and k=2 w= /g is the wave number. Dynamic 

pressures induced by waves are as follows: 

 )cos()exp()( tkkgtp Aw  (6.40) 

In order to get the force acting on a ship we need to integrate these pressures over the 

surface of the ship’s hull. Since the ship is moving along axis  with heading speed vs, it 

would be more convenient to do the integration in the coordinate system moving with a 

ship with the same speed. (To be exact, the integration has to be done in the coordinate 

system fixed to a ship, but we assume surging motion to be small in comparison with 

sailing: this allows us to use the same coordinate system, both for evaluation of the wave 

forces and consideration of motion behavior.) These two coordinate systems are 

connected by the following evident expressions: 
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zytvx s ;;  (6.41) 

The pressure is presented as: 

)cos()exp(
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eAw

sAw
 (6.42) 

Formula (6.42) does not take into account any disturbance of the pressure field that is 

caused by the presence of a moving ship. So integration of the above only produces the 

Froude-Krylov force, it could be considered enough for qualitative study. 
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 (6.43) 

Here we use the well-known technique of the transition from a surface to a volume 

integral (Gauss theorem). Coefficients AS and AC are defined by the following 

expressions:

V

S dVkxkzA )cos()exp(  (6.44) 

V

C dVkxkzA )sin()exp(  (6.45) 

Another possible assumption – that the ship is symmetric relative to her midship section – 

allows us to re-write (6.43) in more compact form: 

 )sin()( kxtAgtF ESAXE  (6.46) 
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S dzdxkxkzA  (6.47) 

The other term of the surging equation (6.38) is the difference between propeller thrust 

and resistance in calm water. This difference can be presented in the form of a function 

dependent on calm water speed vs, number of propeller revolutions n, and surging 

velocity Gx :

 ),,()()( 1 sGp vnxvRvX  (6.48) 

Finally, the surging equation can be expressed as follows: 

 )sin(),,( GExsGxG kxtfvnxx  (6.49) 

Where: )/( 111 amx  and )/( 11amAgf SAx .

6.3.3 Equilibria 

Once the model is formulated, its behavior can be studied following procedures of 

nonlinear dynamics (see Chapter 4). The equation (6.49) has to be presented in vector 

form, decreasing the order of the differential equation: 



Capsizing in Regular Following and Quartering Seas 209 

)(
),,()sin(

1

12

2

1
yF

y

vnykytf

y

y
y

sxEx
 (6.50) 

The next step is a choice of control parameter – the value that we are going to change in 

order to observe changes in the behavior of the system. Since we do not consider 

maneuvers, the number of revolutions is the only value we can change. It is convenient to 

express it in a form of nominal Froude number that has to be calculated using the heading 

speed that would be achieved, if such a number of revolutions would be set in calm 

water. Then, the nominal Froude number has to be included as a parameter into the terms 

defining thrust and resistance: 
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tFFnRFnXxmm
XEpG

 (6.51) 

The motion equation in vector form also can be rewritten: 
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Now, let us find positions of equilibria. To do this, simply let 0y and consider the rest 

as a system of nonlinear algebraic equations. Dependence on time from now on may be 

ignored since the value of the encounter frequency is close to zero: 
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),()sin(

1

12
FnyF

y

Fnykyf xx
 (6.53) 

This system of equations (6.53) degenerates to one equation since is clear that surging 

velocity is zero, when the system is in equilibrium. So we have only one nonlinear 

algebraic equation: 

 )()sin( 2 Fnkyf xx  (6.54) 

It is evident that (6.54) does not have the solution for all Froude numbers. The solution is 

only possible when x(Fn) is equal or less than the amplitude of a sine function. 

Physically it means that surf-riding is only possible when the Froude number crosses a 

certain threshold, or in other words, heading speed is close to wave celerity. When the 

threshold is crossed, we immediately get an infinite number of solutions as these 

equilibria are possible on each wave, see fig. 6.4. 

Fig. 6.4 On threshold for surf-riding equilibria 

xG

Xp(Fn)-R(Fn)

Fxe(xG)

L
o

n
g

it
u

d
in

a
l 
fo

rc
e

 

xG

Xp(Fn)-R(Fn)

Fxe(xG)

L
o

n
g

it
u

d
in

a
l 
fo

rc
e

 



Chapter 6 210 

In order to get rid of infinity, wave only 

could be considered, or following Spyrou 

[1995] introduce surging displacement in 

the form of )/2cos( x  (where is 

length of the wave). That would enable us 

to stay within one wave period all the 

time. Now we get only two distinct 

solutions for equilibrium: one is located 

near the wave trough and another – near 

wave crest. Fig. 6.5 shows their 

dependence on Froude number. 

6.3.4 Stability of Equilibria 

The fact that the system of equations (6.53) is satisfied means that there is a combination 

of variables and control parameters that makes all forces compensate each other, which is 

equilibrium. It does not mean, however that the system can stay in this position for a 

considerable amount of time. Equilibrium may be unstable, so any small disturbance, 

which is always possible, will take the system away from it. So the next logical step 

would be looking for stability of these equilibria.  

As the disturbance is small, the system can be linearized at the vicinity of equilibrium. 

The linearization procedure is the substitution of a nonlinear function with a straight line 

that is tangent to a curve at a given point. As it is well known, a derivative yields this 

tangent, see fig. 6.6. 

Fig. 6.6 Linearization and geometrical meaning of the derivative 
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Linearization of the vector valued function )(yF  makes no substantial difference with 

the above. It is proven in functional analysis that the Jacobean matrix plays a role of the 

derivative for a vector valued function, which can be expressed as: 
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Finally, vector valued function linearized at equilibrium point ey  can be expressed as: 

fyfyFnyFDy A),(  (6.56) 

Where f  is a vector of free terms, it can be found by standard methods of linear algebra, 

but actually it is not needed for further consideration. 

So, what we have now is a mathematical model of ship surging (6.52) linearised at the 

point of equilibrium, the stability of which is studied: 

fyyyyFnyFy e Aatlinearized),(  (6.57) 

The linearized model (6.32) is a system of ordinary linear differential equations of the 

first order: 

22221212

12121111

fyAyAy

fyAyAy
fyy A  (6.58) 

As it is well known the solution of the system (6.58) looks like: 
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y  (6.59) 

Where coefficients Ci and Cfi have to be determined from the initial conditions: 

;;0;0 eyyyt  (6.60) 

However, again, we will not need these figures for further analysis. Values i are 

eigenvalues of the matrix A: eigenvalues are defined to satisfy the following equation 

(for any vector 0z ), there are 2 eigenvalues for a 2x2 matrix: 

 0
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z

z
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AA
i  (6.61) 

Calculation of the eigenvalues is a standard procedure of linear algebra, corresponding 

software is a part of any math package. Eigenvalues may be real or complex (in the latter 

case they come in conjugate pairs.) 

It is most important to note about the eigenvalues results the presence of any positive 

number (if real) or positive real part (if complex). If this happens, then the solution (6.59) 
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is unbounded and the system will leave the equilibrium position, being displaced even by 

a very small disturbance (subchapter 4.3). 

Also, as we have seen from subchapter 4.3, every linear phase portrait (singular point) for 

a 2D system, has a typical arrangement of a pair of eigenvalues. The saddle point is 

associated with two real eigenvalues, one of which is positive and the other, negative. 

Applying these considerations to the surf-riding case, we find that the equilibrium near 

the wave crest is a saddle and it is unstable, the equilibrium near the wave trough is stable 

(stable focus). 

6.3.5 Bifurcation Analysis
1

Besides equilibrium, the system also has periodical motions – surging.  

As can be clearly seen from fig. 6.7 there are two critical values for the control 

parameter. Before the first critical Froude number Fncr1 is reached, periodical surging is 

the only steady state of the system. There are two steady states in between two critical 

Froude numbers: periodical surging and equilibria. Then, only equilibria exist above the 

second critical Froude number Fncr2.

While crossing the Fncr1, the system experiences a global bifurcation: the topology of the 

phase plane changes dramatically and it’s impossible to map points before and after 

bifurcation to each other. Above Fncr1 the system has alternatives: it may be periodic 

surging or stable surf-riding at the equilibrium point near the wave trough.  

Fig 6.7 Changing of surging/surf-riding behavior with increasing nominal Froude number 

                                                          
1 The author is grateful to Prof. K. Spyrou for fruitful discussion of the materials of this subchapter.  
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Further increasing of the nominal Froude number makes the trajectory of the periodic 

motion to move close to unstable equilibrium near the wave crest, see fig. 6.8. The 

trajectory that leads to unstable equilibrium (saddle inset) reaches it in indefinite time. So 

being close to such an equilibrium means a significant slowing down of surging, giving 

the impression that a vessel is caught by the wave near the wave crest [Spyrou, 1996]. At 

the same time, as we have seen, this equilibrium is unstable and the ship cannot be held 

there for a significant amount of time. 

As soon as a periodic orbit touches the inset (the trajectory that leads to the saddle – 

unstable equilibrium near the wave crest) the periodic surging ceases to exist and the 

system experiences another global bifurcation that is called “homoclinic connection”. 

Fig. 6.8 Structure of surging /surf-riding phase picture and its changing when Fncr2 is approached 

Identification of the bifurcation has a direct practical meaning. It is known that a 

hysteresis phenomenon is associated with homoclinic connection. So, an attempt to 

escape from surf-riding just by decreasing the number of revolutions may not be smooth. 

See [Kan, 1990] and [Spyrou, 1996] for more. Fig. 6.9 contains samples of the surging 

phase plane for below Fncr1, (a), between Fncr1 and Fncr2 (b) and above Fncr2, (c) taken 

from [Makov, 1969]. It is noteworthy that these results were obtained without the use of 

nonlinear dynamics. 

Fig. 6.9 Surging phase plane (a)Fn<Fncr1; (b)Fncr1 < Fn <Fncr2; [Makov, 1969] 
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Ananiev [1994] associated surf-

riding with loss of motion stability 

of the steady state solution of the 

surging equation, which allowed 

getting quite practical results, 

again without the use of nonlinear 

dynamics. However, only 

nonlinear dynamics provides a 

tool that allows observation of the 

entire picture. 

6.4 Model of Ship Motion in Quartering Seas
1

This and the following two subchapters are focused on broaching behavior and the 

capsizing danger associated with it. The problem has to be considered in terms of 

quartering seas: as soon as the turn occurs, the following seas assumption no longer 

holds. Also, the danger of surf-riding and consequent broaching also exists for quartering 

seas.

Broaching is a phenomenon that results in a ship being unable to maintain her course 

despite application of the maximum steering effort [Umeda and Renilson, 1992]. Usually 

we consider the interaction of environment and a ship as a solid body. Here, we have to 

take into account the third factor: actions of the human operator or autopilot. Otherwise, 

the forthcoming model would be inadequate, since it is difficult to imagine a ship 

significantly deviating from its desired course and no actions being taken. Moreover, the 

majority of currently operated ships are equipped with autopilot devices, which will try to 

keep the course without human intervention.  

This actually means that to build an adequate broaching model we need to take 

controllability and control theory equations and consider them together with the roll 

equation. So, broaching is a phenomenon that lies at the border between stability and the 

two above-mentioned sciences. 

6.4.1 General 

While surf-riding problem could be solved just by consideration of the surging equation 

(e.g. the dynamical system with one degree of freedom), sailing in quartering seas 

generates swaying motion, which causes us to consider the system with several degrees 

of freedom. The first work to examine such a system with regard to broaching was 

Davidson [1948]. He studied a linear sway-yaw system and found that a ship that is 

directionally stable in calm water is not necessary directionally stable in following seas. 

                                                          
1 Written in co-authorship with Prof. Nayoa Umeda of Osaka University. 

Fig. 6.9 (continued) Surging phase plane (c)  

Fn >Fncr2 [Makov, 1969] 
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Further development was carried out in the 1960’s and 1970’s and involved models 

sometimes with three degrees of freedom: surge-sway-yaw. See Wahab and Swan [1964], 

Ananiev [1964], Eda [1972]. The approach adopted there was based on motion stability 

analysis of a linear or linearized system. However, it cannot describe the broaching 

picture completely since it is a nonlinear phenomenon. 

Ananiev [1968] considered three degrees of freedom: surge-yaw-roll, the system was 

fully nonlinear and treated numerically. The results of this simulation yielded the first 

qualitative picture of broaching in following seas based on a nonlinear model that 

included Froude – Krylov and hydrodynamic force components. Unfortunately, this work 

was published only in Russian and did not get the circulation it deserved. 

The work of Motora, et al [1982] changed the direction of broaching research. 

Combining computer simulation of a fully nonlinear system (surge-sway-yaw-roll) with a 

model and full-scale experiment, it was shown that the Froude-Krylov force component 

is insufficient for an adequate description of broaching. This attracted attention to the 

force problem, see Terao [1980], Okhusu [1986], Umeda and Renilson [1992a], Ananiev 

[1995], Umeda, et al [1995]. Motora, et al [1982] and Renilson [1982] found the 

broaching occurs when the wave induced yaw moment exceeds the maximal moment 

being produced by the rudder deflection. 

The increasing power of computers made time domain simulation much easier than 

before, but also raised another challenge: initial conditions. As any other nonlinear 

phenomenon, broaching phenomenon significantly depends on initial conditions and this 

makes it difficult to identify. 

The answer was in the application of nonlinear dynamics that considers behavior of sets 

of solutions of multi degree-of-freedom systems. Umeda and Renilson [1992, 1994] 

considered a 4 degrees of freedom dynamical system: surge-sway-yaw-rudder and 

identified its equilibria.

Umeda and Vassalos [1996] studied stable state periodic motions of the above system 

using the averaging method. Such modes may be unstable when the heading speed of a 

ship is close to the wave celerity and encounter frequency is small. It was shown that 

such instability actually means broaching. 

Spyrou [1995, 1995a, 1996, 1996a, 1997, 2000] considered nonlinear surge-sway-yaw-

roll and studied topology of its phase space. Four distinct broaching scenarios were 

found. Analysis of nonlinear yawing motion revealed flip and fold bifurcations at lower 

speed (also see subchapter 6.5). 

Umeda, et al [1997] proposed an approximate method to predict conditions when 

broaching becomes inevitable. The method does not require time domain simulation; also 

it was validated by model experiments. Umeda (1999) studied behavior of unstable 

invariant manifold and identified capsizing due to broaching with heteroclinic bifurcation 

(also see subchapter 6.6). 

6.4.2 Equations of Horizontal Ship Motions 

Consider a ship heading in regular quartering seas with speed VS that is close to wave 

celerity – so surf-riding is possible. The wave has frequency  and runs with angle 
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relative to the course of the ship. We place the origin of the coordinate system at the 

wave trough, axis  coincides with the direction of the wave proliferation and axis  is 

directed downwards. We also introduce another coordinate system that is fixed to the 

ship. We shall need this system later when we will be considering forces. Since we have 

to consider rolling, let us allow this fixed system to yaw, but not to roll and to pitch. Such 

a system was proposed in Hamamoto, et al [1994] and is known as the “Horizontal Body 

Axes Coordinate System”, see Fig. 6.10. 

Fig. 6.10 Horizontal body axes coordinate system 

As we mentioned above, we need to compose the broaching model from three models: 

rolling and capsizing, autopilot and controllability. Let us start from the last one and 

review briefly the procedure of derivation, using mainly Lewis [1989] notation (see also 

the detailed derivation of maneuvering equations in Appendix 3 of [ABS 2006]): 
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 (6.62) 

System (6.62) takes into account only four degrees of freedom. This can be considered 

sufficient for an adequate description of broaching phenomenon. The heading speed is 

assumed to be close to wave celerity, because surf-riding is the pre-requisite for 

broaching. So encounter frequency is small. The natural frequency for heaving and 

pitching usually is comparatively high, so these types of motions may not be significant 

for these frequencies. Surging, swaying and yawing have no restoring terms, so their 

reaction to low frequency excitation may be significant. The roll restoring term is much 

smaller than the pitching one: longitudinal stability is always better than transverse, see 

[Umeda, et al, 1997] or [Umeda, 1999]. 

For simplicity’s sake, we start with the surge-sway-yaw model and then add roll and 

autopilot equations. We also consider the linear model and add nonlinear terms later as 

we did for the roll equation. 

Forces and moments in (6.62) usually are presented in a coordinate system fixed to a 

ship, see Fig. 6.10. Both coordinate systems are related by the following expressions: 
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At the same time, we need the original coordinate system  to study broaching 

behavior. To be able to use existing calculation methods for the forces, we need first to 

apply the coordinate transformation (6.63) to them: 
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 (6.64) 

Then, we need the accelerations G  and G  via projection of the speed vector of a ship 

),( GGV  in projections on axes x and y, because hydrodynamic forces are usually 

measured in a coordinate system that is fixed to the body:
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Here, u and v are just nomenclature for the longitudinal and transverse projections of ship 

speed, as it is conventional for controllability. Differentiation of both parts of (6.65) with 

respect to time yields the necessary accelerations G  and G :

sincoscossin

cossinsincos

vuvu

vuvu

G

G  (6.66) 

Substitution of (6.63) and (6.64) into (6.62) yields: 

),,,,,,(

),,,,,()(

),,,,,()(

vuvuNI

vuvuFuvm

vuvuFvum

zz

y

x

 (6.67) 

Hydrodynamic forces here are considered as functions of the speed components and their 

derivatives. The linearized controllability model can be derived from (6.68) by expanding 

the terms into a Taylor series: 
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Where {x01 … x0n} represents an initial point. Limiting ourselves to the linear terms, we 

shall obtain expression as follows: 

)(...)()(),,,,,( 000
xxx

x

F
vv

v

F
uu

u

F
vuvuF  (6.69) 

If we choose the initial point at the time when the ship was sailing on a straight course, 

then, only u0 is not equal to zero, the rest of the coordinates are zeroes: 

 0;0 000000 vuvu  (6.70) 
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Let us also take a close look at some of the partial derivatives in (6.68). Some of them 

may be zeroes, just because a ship usually can be treated as a symmetric body. Symmetry 

relative to the centerline plane makes the longitudinal component of the hydrodynamic 

force independent from transverse velocity, yawing angular velocity and angular 

acceleration: 

0;0;0
d
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d

F

dv

F xxx  (6.71) 

The same reasoning makes the transverse component of the hydrodynamic force 

independent from the longitudinal velocities. In reality, we cannot produce a lifting force 

by changing heading speed and acceleration: 
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The same can be applied to the moments: 
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Following a conventional derivation procedure for the controllability model, we 

introduce a new nomenclature for the rest of the derivatives: 
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The values defined by (6.74-76) are usually called “hydrodynamic derivatives”. Also: 

rr ;  (6.77) 

The only item left is rudder action. It can be expressed in the first expansion (so far we 

take just rudder action; interaction with the hull and propeller will be taken into account 

later) as: 
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Here R is the angle of rudder deflection. Now, we are ready to write a set of 

controllability equations, we just expand the right hand side terms of (6.67) into a Taylor 

series up to the first order derivatives and take into account (6.71-73), using the 

nomenclature of (6.74-76). To get it in a conventional form, all terms expressing hull 

forces (including inertia) should be gathered on the left side and the “rudder” terms (6.78) 

should be on the right side: 
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Rrrvvzz
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NrNrNvNvNrI
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uXuuXvrum
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0)()( 0

 (6.79) 

To complete the procedure, we neglect the nonlinear term mvr (both v and r are small) 

and regroup the terms so the linear controllability model looks like: 

Rrzzrvv

Rrrvv

uu

NNIrrNvNvN

YrYrmuYYmvvY

XmuuuX

)(

)()(

0)()( 0

 (6.80) 

System (6.80) could be simplified even more, however it is not necessary here as we 

proceed further with our study of broaching. 

6.4.3 Surging and Surge Wave Force 

Let us start from the first equation of (6.80); it describes surging. We have already 

considered it when we were talking about surf-riding, and there is not too much to add. 

The only item we can mention is that the coefficient uX  represents the longitudinal 

added mass a11 in conventional seakeeping nomenclature. The only difference is that 

conventional controllability does not consider dependence of added mass on wave 

frequency, since conventional controllability deals with calm water. Here, we also have 

to consider added mass at excitation frequency is zero since the encounter frequency is 

very small, so we use symbol mx instead of a11:

 ),/()()()( GWGGGx XcTcRmm  (6.81) 

6.4.4 Swaying and Sway Wave Force 

As can be clearly seen from fig. 6.11, [Umeda, et al, 1995]. The Froude-Krylov 

hypothesis is insufficient to describe the swaying wave force. So we have to take into 

account the interaction between ship induced fluid motion with incident waves. The 

theoretical solution of Umeda, et al [1995] is based on slender body theory. The general 

solution [Mauro, 1967] was simplified for the case of zero encounter frequency. Basic 

application of slender body theory can be found in [Newman, 1977]. 

Since the derivation is too lengthy, we have to limit ourselves to a discussion of the final 

results. The final formulae are given below: 

 ),,/(),/(),,/( uYYuY GHGFKGw  (6.82) 

The Froude-Krylov part is just a result of integration of wave pressure on the ship 

surface:

FP

AP

G

xkd

AwGFK dxxkexSxCkgY )cos(sin[)()(sin),/( )(5.0

1  (6.83) 

Here:
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sin)(5.0

]sin)(5.0sin[
)(1

kxB

kxB
xC  (6.84) 

B(x) is the waterplane breadth of the ship section at abscissa x; d(x) is the draft abscissa x;

S(x) is the area of the submersed part of the ship section at abscissa x. AP means “aft 

perpendicular” and FP means “fore perpendicular”. 

Fig. 6.11 Sway wave force [Umeda, et al, 1995] 

The hydrodynamic part here is mainly contributed by free vortex layers. The diffraction 

influence may be small because of the small value of the encounter frequency: 

FP

APG

xkd

yAwGH xkexSuuY )cos(cos[)(sin),,/( )(5.0  (6.85) 

Sy(x) is the two-dimensional added mass for the ship section at abscissa x for zero 

frequency. Theoretically, it can be estimated using any appropriate method. A 

comparison of the results of different theoretical methods with model tests indicates a 

high sensitivity of the final result to accuracy of its calculation. (See [Hamamoto, 1973] 

and compare with [Umeda, et al, 1995] or fig. 6.11) Then we obtain the following 

formula based on (6.80) :  

 ),,/()()( uYYYrYvYrYmuYmv GwRrvrv  (6.86) 

We also have added term Y  that expresses influence of the roll angle on swaying 

motion. Coefficient Yv is added mass 22 taken with a “minus” sign. Since the encounter 

frequency is very low and vortexes are “responsible” for the generation of hull and rudder 

forces, the best way to get their numerical values is by conventional captive tests in calm 

water, see [Umeda and Vassalos, 1996]. Experiments by Fujino, et al [1983] showed that 

wave influence on these coefficients is small. 
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6.4.5 Yaw Motions and Yaw Wave Moment 

The third equation of (6.80) describes yaw motions :  

 ),,/()( uNNNrNvNrJI GwRrvzzzz  (6.87) 

Here, Nw is the wave yawing moment. Analogously to the swaying wave force, this 

hydrodynamic component is significant; see fig. 6.12 [Umeda, et al 1995]. As in previous 

cases the term rN  has the meaning of added moment of inertia Jzz (or m66 in seakeeping 

notation).

We consider the yawing wave moment as a sum of the Froude-Krylov and hydrodynamic 

components. The free vortex layer contributes to the latter one: 

 ),,/(),/(),,/( uNNuN GHGFKGw  (6.88) 

Fig. 6.12 Yaw wave moment [Umeda, et al, 1995] 

Froude-Krylov component: 
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Hydrodynamic component : 
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 (6.90) 

We also have dropped the term vNv  because it is small for the majority of ships, see 

[Lewis, 1989]. The term N  was added to take into account the roll influence on yaw 
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motion. Numerical values for hydrodynamic derivatives are suggested to be found by a 

conventional captive model test in calm water, see [Umeda and Vassalos, 1996]. 

6.4.6 Roll Equation for Broaching Study 

The next step is to add the roll equation. First, consider the linear equation: 

 )()( 4444 tMGMmgbaI Wx  (6.91) 

First of all, if we study capsizing we need to consider the nonlinear restoring term: 

mgGZ( ). Then, since the broaching situation assumes a very low encounter frequency, 

there will be no time dependence for the excitation moment: 

OGuYuKK

uKtM

GwGHGFK

GwW

),,/(),,/(),/(

),,/()(
 (6.92) 

Model tests show that the hydrodynamic component is significant for the roll excitation 

moment as well, see fig. 6.13 [Umeda, et al, 1995]. 

Fig. 6.13 Roll excitation moment [Umeda, et al, 1995] 

The following expressions for these components were deduced by Umeda, et al [1995] : 
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Here, C1 is defined by formula (6.84) and   

34
]2/)(sin[

]2/)(sincos[)(sin]2/)(sinsin[2
)(

xBk

xBkxBkxBk
xC  (6.94) 

A comparison of the calculation and the experimental results has shown that linear 

expansion of the hydrodynamic component is sufficient for an adequate description of the 

roll excitation: 

FP

APG

xkd

SywGH xkexIuuK )cos(cos[)(sin),,/( )(5.0  (6.95) 

Hydrodynamic excitation here is created by a free vortex layer, the same as used for 

swaying and yawing. ISy(x) is a two-dimensional added roll moment due to sway 

acceleration. The third component is just a heeling moment, caused by the sway 

excitation force: here OG  is the distance between the waterline (point O) and the centre 

of gravity of the ship. The force Yw is applied at the waterplane level, because added 

masses for ship sections ISy(x) and Sy(x) usually are obtained from the coordinate system 

with the origin at the waterplane. 

Roll damping consists here mainly of the linear component because of relatively large 

forward velocity, so it will considered linear, in controllability nomenclature: 

ppKb p ;44  (6.96) 

It is easy to get the rest of the terms; they should be just moments of corresponding forces 

in swaying equations: 
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 (6.97) 

Again, the reader should not be misled by usage of symbol b; it does not mean that the 

forces have a wave nature – vice versa: they are vortex forces and moments! Here zH is 

the height of the centre of lateral force. 

Now, we can write the roll equation in both notations: “seakeeping” and “controllability” 

:

RGw

HGxx

KuK

zcbbGZmgbaI

),,/(

)()( 2446244444  (6.98) 

),,/(

)()(

uKK

GZmgKpKrKvKzurmpJI

GwR

prvHxxxxx
 (6.99) 

Jxx is added mass 44 in controllability notation. It meant to be defined for zero  wave 

frequency. Hydrodynamic derivatives can be found in the same way as in the previous 

cases. More details can be found in [Umeda, et al, 1995], [Umeda and Vassalos, 1996]. 
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6.4.7 Equation of Autopilot 

The last equation should describe action of the autopilot. Generally, this kind of 

differential equation is a subject of control theory. Here, a brief description is given.

The simplest course-keeping procedure can be described by the following linear 

equation:

 )( CRR K  (6.100) 

Here C is desired course. Action is very simple – rudder deflection is just proportional to 

deviation from the desired course. KR is a proportional coefficient that is called “rudder 

gain constant” or just “rudder gain” (sometimes it is called “yaw gain”). This is just 

simple feedback, too simple to be applied practically: one of the reasons, such an 

“autopilot” would always be late because it would react on course deviation only. To 

make it react in advance we can add some reaction on yaw rate too: 

rTKK DRCRR )(  (6.101) 

Here, TD is a correction for rudder gain, to keep proportionality to yaw rate. Such control 

is called “differential” because we have added reaction on the derivative and TD is called 

“time constant for differential control”.  

The last step to get an appropriate equation of autopilot is to take into account that the 

steering gear cannot react instantly – rudder deflection takes some time – so we can add 

deflection velocity into (6.101): 

rTKKT DRCRRRE )(  (6.102) 

Here TE is another proportionality coefficient that is called “time constant for steering 

gear”. All coefficients KR, TD and TE are subjects of autopilot tuning. For more 

information, see [Lewis, 1989]. 

6.4.8 Model for Broaching 

Summarizing, the system of equations was obtained that may be suitable for the study of 

ship behavior in quartering seas. It consists of conventional controllability equations with 

the addition of roll and autopilot equations: 
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 (6.103) 

To proceed with the dynamics of broaching phenomenon, we need first to present (6.103) 

as a system of differential equations of the first order: 
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It would be more convenient to present system (6.104) in vector form: 

 ),( bxFx  (6.105) 

Where x  is called the state vector: 

T

RG prvux },,,,,,,{  (6.106) 

Sign “T” here means transposition that converts vector –row into vector –column. The 

vector of parameters b consist here just from two parameters: 

},{ nb C  (6.107) 

Here, n is number of propeller revolutions. It has to be included in all terms connected 

with thrust and rudder actions. Function ),( bxF is vector valued and forms the right hand 

side of the system (6.105): 
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 (6.108) 

The next step is application of a nonlinear dynamics procedure to the dynamical system 

(6.105).
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6.5 Ship Behavior in Quartering Seas
1

Following an established nonlinear dynamics procedure, positions of equilibrium are 

searched in dynamical system (6.105). First, we will look at an unsteered vessel. It is the 

same model, just without the autopilot equation: the rudder deflection angle has to be 

considered as a control parameter. Then, a steered vessel is considered, having a rudder 

deflection angle as one of the state variables and desired course as a control parameter. 

A comparison between steered and unsteered cases has practical importance: it shows 

how broaching behavior can be altered by the action of the autopilot or helmsman. This 

comparison can answer a question: what can we do to avoid broaching? 

Another control parameter is commanded speed that can be expressed in a form of 

number of revolutions of main engine or in a form of nominal Froude number, expected 

for these engine settings in calm water. 

6.5.1 Equilibria of Unsteered Vessel 

Consider an unsteered vessel. If she is in the equilibrium position, then a sum of all the 

forces and moments acting on her is zero: 

0),( uuu bxF  (6.109) 

Here index “u” reminds us that the vessel is unsteered. 

The procedure is similar to the surf-riding analysis in following seas. We just have more 

equations in the system. As all derivatives disappear, expression (6.109) degrades to a 

system of nonlinear algebraic equations that can be solved numerically. 

Before we proceed, let us once again consider the physical meaning of the equilibrium 

for the model adopted here. Assuming the derivatives are zero, we however, did not take 

away wave action. All the wave forces that depend on position (like the Froude-Krylov 

wave forces) are still included into (6.109). It means that despite wave action, the ship 

does not move, so she may be captured by a wave. It means that the equilibrium position 

in this model is a surf-riding mode in quartering seas. 

As we have seen from subchapter 6.3, the surf-riding mode can exist for a certain range 

of nominal Froude numbers, when ship speed is close to wave celerity. Similar 

limitations exist for rudder deflection; surf-riding is a phenomenon of following and 

quartering seas. 

The system (6.109) consists of 7 equations, so the equilibrium is a point in a space of 7 

dimensions and several solutions are possible since the system (6.109) is nonlinear. 

Changing rudder deflection angle will cause these points to move in eight-dimensional 

space (we have added one dimension – rudder deflection angle). We can only study 

projections of this trace on a plane. Fig. 6.14 [Spyrou, 1996] shows such projections on a 

coordinate plane position on wave (b) and heading angles (a) vs. rudder deflection angle. 

As can be seen from fig. 6.14, there may be none, two or four equilibria, depending on 

the value of the rudder deflection angle. Following established terminology, we 

                                                          
1 Written in co-authorship with Prof. Kostas J. Spyrou of the National Technical University of Athens. 
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distinguish equilibrium positions located near the wave crest and wave trough. They can 

be easily identified from figure 6.14b, but not that evident in figure 6.14a. 

Fig. 6.14 Surf-riding equilibria in quartering seas [Spyrou, 1995] 

The second control parameter, the nominal speed (in the form of nominal Froude 

number), is capable of altering the shape of both curves, although not too significantly in 

a qualitative sense, see fig. 6.15. So, it is possible to limit further consideration just by 

one curve, assuming, however, that the nominal Froude number remains within the limits 

making surf-riding possible. 

Fig. 6.15 Surf-riding equilibria for different Froude numbers (Fn1< Fn2<Fn3) [Spyrou, 1995] 

6.5.2 Stability of Equilibria of Unsteered Ship

The procedure of stability analysis of equilibria is already described for surf-riding in 

pure following seas in a quite general way, see subchapter 6.3. We have to point out, 

however, on some aspects of eigenvalues behavior that are especially important in a 

multidimensional case, where visualization is a problem. 
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The number of eigenvalues corresponds to the dimension of the model; it is the number 

of equations in (6.105). That means, each eigenvalue can be associated with a variable 

from our system. For the unsteered vessel it looks like: 

rx

x
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x

vx

ux

x G

77

66

55

44

33

22

11

 (6.110) 

A positive eigenvalue for a certain variable means that the system will escape in the 

particular direction from an unstable equilibrium position.  

Actually eigenvalues provide even more valuable information; they not only constitute 

the stability or instability of the equilibrium and direction of possible escape. Behavior of 

the eigenvalues (i.e. how do they move when we change the control parameter) gives a 

complete qualitative picture of motion in the vicinity of equilibrium (subchapter 4.3). 

This information may be very useful as a first step towards the whole picture of possible 

motions.

We are looking at how the phase portrait is changing while we are moving along the 

curve of heading vs. rudder angle. The only problem here is the number of dimensions. 

When we are looking at roll, we had just one degree of freedom and everything was 

taking place on the phase plane, which is a two-dimensional phase space. Here, we have 

seven variables resulting in 7-D phase space, so the complete visualization is impossible! 

We can plot only 2-D and 3-D intersections or projections. 

It is not necessary to consider all the eigenvalues all the time. We will be looking only on 

those that indicate instability that are positive or show a tendency to become positive. 

It has been shown that there are no stable equilibria for the unsteered vessel Spyrou 

[1996]. All cases have shown one or two positive real eigenvalues or a positive real part 

of complex eigenvalues. See fig. 6.16 where eigenvalues and corresponding phase 

pictures are shown. 

Let us start from zero and track the eigenvalues’ behavior, moving first along the curve 

corresponding to the wave crest. 

The positive eigenvalue corresponds essentially to surging motion. It is real and its “pair-

mate” is real and negative. This makes a saddle type of the phase plane that governs 

motion of the system in the vicinity of the equilibrium. Moreover, we can see that the 

saddle repels the system in the surging direction. 

Now, let us move towards point D in fig. 6.16. While moving, the negative real 

eigenvalue moves towards zero and reaches it at the point D, see figure 6.17. 
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Fig. 6.16 Stability of surf-riding equilibria in quartering seas 
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Fig. 6.17 Saddle-node bifurcation for an unsteered vessel in quartering seas 

When it crosses zero, we have a situation with two real positive eigenvalues. As it is 

known, locally this constitutes a nodal type of phase plane (see also subchapter 4.3). We 

see here a bifurcation, which is known under the names “saddle-node bifurcation”, 

“global fold bifurcation”, or “limit point bifurcation”. More information about 

bifurcations in visual form can be found in [Thompson and Stewart, 1986].

Further developments of the situation make the second eigenvalue (that one, which was 

negative in the first place) to reach its mate at the point C on fig. 6.16. It is separately 

shown on fig. 6.18. 

Fig. 6.18 Transition from focal to nodal instability for an unsteered vessel in quartering sea 
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Now, we have two complex eigenvalues with two positive real parts, which makes an 

unstable focus type of phase plane. We observe the transition from nodal to focal 

instability here. 

The next transition is more complex. Spyrou [1996] found that there may be several 

scenarios. Here, we show only one, another one is described in the above reference.

The real parts of complex eigenvalues cross the zero level, see fig. 6.19. Nonlinear 

numerical calculations show the existence of a limit cycle (periodic surge motions) 
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caused by nonlinear properties of the model. While complex eigenvalues move towards 

zero, the amplitude of these periodic motions decreases and the motion itself disappears 

as soon as the complex eigenvalues reach zero level. After it has been crossed, no 

positive eigenvalues are left. This means the equilibrium becomes stable and the phase 

space is transformed into a stable focus, see fig.6.19. Such a transition is called 

“supercritical Hopf bifurcation”, see [Thompson and Stewart, 1986]. (Traditionally it is 

considered vice versa stability towards instability). 

Fig. 6.19 Transition from surge to yaw instability  

The region of stability is not large. Shortly after Hopf bifurcation, a negative real 

eigenvalue, which corresponds to yawing, reaches zero and becomes positive (point A in 

figures 6.16 and 6.19). Stable focus becomes correspondingly the index 1 saddle. The 

observed bifurcation also belongs to a type “limit point bifurcation” – it was encountered 

at point D. 
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After point A, we again have a saddle (as before at point D), but this saddle repels the 

ship in the yawing direction. Now we are on the branch that contains equilibria near the 

wave trough, see fig. 6.16. Further movement brings us to the starting point at zero. The 

task of our analysis of unsteered vessel equilibria is completed now, since the bottom 

portion of the curve (locus) is symmetrical. 

Summarizing this part of the study, the following comments can be made: 

1. Equilibrium at the surf-riding mode is unstable for the vast majority of rudder 

deflection angles. 

2. The equilibrium near the wave crest bears instability in the surging direction, while 

the equilibrium near the wave trough is unstable in the yawing direction. 

3. One of the possible scenarios of transition between surge and yaw instability is 

capable of creating a short range of stability of equilibrium. 

6.5.3 Stability of Equilibria of Steered Ship 

We consider stability of the surf-riding equilibrium for steered vessels. Now the autopilot 

equation is included in the model and rudder deflection angle becomes one of the 

variables, since it is the result of autopilot actions. Despite the fact direction of ship 

heading is now controlled by autopilot, still input of commanded or desired heading is 

necessary. The commanded heading now is the control parameter. The nominal Froude 

number still plays the roll of the second control parameter.  

Following the previous procedure, we start from zero and move along the wave crest 

branch of the locus. Analogously to the unsteered case, the equilibrium is unstable here; 

we have an index 1 saddle repelling the system in the surging direction, see fig. 6.20. 

The only positive eigenvalue shows the tendency to zero. When it reaches zero, we 

observe limit point bifurcation. No positive eigenvalues are left over. So, the equilibrium 

becomes stable: we get an attractor in three-dimensional phase space. This attractor does 

not exist for a long time. The surging eigenvalue that just left a positive semi-plane joins 

its pair-mate; they become complex and cross the zero again. As we have seen before, it 

makes a supercritical Hopf bifurcation. The stable attractor has been transformed into an 

index 2 saddle. Then it has an unstable focus in one of its phase planes. Analogously to 

the unsteered vessel’s case, the unstable focus is limited by a cycle of periodic surge 

motions, which are caused by nonlinear properties of the system. Sometime during this 

range, we got the system to move along a “wave trough” branch. 

Then the second supercritical Hopf bifurcation occurs, when the surging pair of complex 

eigenvalues crosses zero again and we have the attractor back, which makes the 

equilibrium stable. The stability does not last long. The real eigenvalue corresponding to 

yawing crosses zero and creates an index 1 saddle that repels the system in the yawing 

direction.

So far, there are little differences between the steered and unsteered cases with the 

exception of some details in the bifurcation types. The serious difference comes here. 

There is a third limit point bifurcation, after which, the system becomes stable and keeps 

this stability all the way until it reaches zero. 
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Fig. 6.20 Stability of equilibrium for a steered ship in quartering seas 
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The main conclusion we can make from our comparison study between steered and 

unsteered cases is that steering (autopilot or helmsman) is capable of creating a stable 

surf-riding mode, when a ship is located near a wave trough. 

This result is an important. It contains some indications that autopilot settings could play 

a crucial role in broaching behavior and possibly a means to escape broaching. [Spyrou, 

1996] contains more details on how these settings can influence the shape of the 

equilibrium locus. 

6.5.4 Large Ship Motions in Quartering Seas 

The study of stability of surf-riding equilibrium gives additional useful information, not 

only on whether it is possible for a system to stay in a certain equilibrium position. 

Probably, the most important additional knowledge is the character of the motion in the 

vicinity of equilibrium. This is actually the first step towards the study of transitions 

(broaching is one of them), because the equilibria are special (singular) points. 

Other special figures are limit cycles or periodical motions. Together with equilibria, they 

are major factors of phase space topology. 

We know that at least one periodic motion mode or limit cycle is possible along with 

surf-riding (within a certain range of nominal Froude numbers, of course). So we have at 

least three steady states (limit sets) for a steered ship: stable equilibrium near wave 

trough, unstable equilibrium near wave crest and periodic motion, see figure 6.21 

(assuming that commanded 

heading angle and nominal 

Froude number are given). 

Along these three limit sets, 

only two have attracting 

capabilities: stable 

equilibrium near wave 

trough and periodic motion. 

Unstable equilibrium near 

wave crest repels the 

system. Basically, an 

attraction element of the 

phase space includes 

singularity (like equilibrium) 

or special trajectory (like 

limit cycle or periodic motion) and a certain area of attraction. We shall call it “attraction 

set” or just “set” during further consideration. It is impossible to visualize it: we are 

working in eight-dimensional space. 

There is one more attractor set that is not shown in fig. 6.21. It actually takes the system 

so far from the course that the ship can be no longer considered as heading in quartering 

seas. Spyrou [1996] gives the following physical description of this set.

The yaw wave moment tries to turn a ship away from the direction of wave propagation 

when the ship is located near wave trough. The autopilot deflects the rudder trying to 
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keep course. Since the yaw wave moment may be large, the rudder may be deflected to a 

large angle up to its maximum angle of 35
0
 or larger if the steering gear permits higher 

angles. Then the ship reaches wave crest. Here the wave yaw moment changes direction 

and becomes stabilizing, but the rudder is still deflected at maximum angle and the ship 

gets involved in quite violent turn. Spyrou [1996] also mentions about the situation when 

wave yaw moment on wave trough is so large that it makes the ship turn despite the 

rudder being deflected to its maximum range. 

There is one more attractor set: we have seen the short appearance of stable limit cycle as 

a result of Hopf bifurcation. However, the range of parameters, when these modes are 

possible, is so narrow that they probably do not hold any practical importance. However, 

these modes may be important for a general understanding of ship behavior in quartering 

seas.

So far, let us consider three main attractor sets: 

a) Stable surf-riding equilibrium near wave trough, 

b) Stable periodical motion around commanded heading, 

c) Described above “escape to infinity”, when a ship is involved in a turn, 

Spyrou [1996] defines broaching as a “transient motion towards (c) from the attractor set 

(a) and/or (b)”.  

There are four scenarios identified in the above reference. Here we give a brief review of 

them, followed by detailed consideration in separate subchapters. 

Broaching Scenario #1 

Let the ship be involved in periodic motion (attractor set b) then, (as we did for surf-

riding) the nominal Froude number is increased so that this mode (periodic motion) 

ceases to exist. We have seen the same scenario in surf-riding. Limit cycle comes closer 

to the unstable equilibrium. As soon as it touches, it ceases to exist, see fig. 6.7. The 

system has a choice: it can be attracted by a nearby stable surf-riding equilibrium 

(attractor set a) or it may escape to infinity (attractor set c). 

As we have seen from our study of stability of surf-riding equilibrium in the case of 

steered vessels, there are commanded heading angles that do not provide us with stable 

equilibrium (see fig. 6.20). If such a commanded heading was set up at the moment that 

periodic motion ceases to exist, then the only attractor left is (c) and broaching is 

inevitable.

Broaching Scenario #2 

If a ship is caught by a wave so the system is in a stable surf-riding equilibrium, then an 

attempt to escape from surf-riding can be achieved by changing the speed, or changing 

the commanded heading, or changing both. The system has two alternatives: periodic 

motion (attractor set b – if available) and broaching (attractor set c). Further study is 

necessary in order to find the boundaries between these domains of attraction, see 

subchapter 6.5.5. 
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Broaching Scenario #3 

Let a ship be involved in periodic motion and a gradual increase in the commanded angle 

occurs. This may result in increasing amplitude of rudder deflection oscillations. The 

heading of the ship can be changed in quite wide limits 0180 ; however, the rudder 

deflection has limits of 035 . These limits and /or insufficient rudder force could lead to 

a “frozen rudder” situation, which would allow the wave yaw moment to take over and 

cause broaching. More details are available in [Spyrou, 1996]. 

Broaching Scenario #4 

Let a ship be involved in periodic motion. These oscillations are found to be capable for a 

jump to a large amplitude mode and even experience period doubling like roll motion. 

The new amplitude may be large enough to make the turn violent and create a threat of 

capsizing. This scenario is considered in subchapter 6.5.6.

6.5.5 Global Analysis 

The global analysis means that we are looking for boundaries between different  areas of 

attraction and to study changes to these boundaries when control parameters are changed. 

So, we put a grid in eight-dimensional phase space; each node of this grid is a set of 

initial conditions. Then, we integrate our system with these initial conditions until the 

outcome is clear. It means that we are certain which attractor finally takes over for this 

particular set of initial conditions. Then, the procedure has to be repeated for the next 

node in the grid and so on. When the calculations are completed, we can fix the boundary 

between nodes that yield different outcomes. The procedure is meant to be repeated for 

both control parameters within a given range.  

Actually, it is not so difficult to carry out such calculations, but direct interpretation of 

the results is very complex or even impossible: we cannot visualize the boundary in 

eight-dimensional space nor its dependence on two control parameters. This is a good 

example of how the problem of interpretation may render the calculation results useless. 

To overcome this difficulty, we have to make all initial values constant with the 

exception of one. Then our boundary will be just a value and we can get a dependence of 

this boundary on the control parameter [Spyrou, 1996], see fig. 6.22a (ship is located in 

wave trough). 

Fig. 6.22 Domains of surf-riding and periodical motions (Froude-Krylov forces only)[Spyrou, 1996] 
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Despite its simplicity, the curve in fig. 6.22a allows us to draw important conclusions. 

The area of surf-riding attraction shrinks with increasing heading angle. The surf-riding 

was inevitable for the following seas, but there is a choice for the system in quartering 

seas. Increasing nominal Froude number increases the range of commanded heading 

angles, where surf-riding is the only choice. However, the general principle remains the 

same –further increasing of commanded heading angle leads to the choice between surf-

riding and periodic motion: see fig. 6.22b. 

Both cases in figures 6.22 were calculated with Froude-Krylov forces only. Introducing 

diffraction changes the picture considerably; the broaching area appears, see fig.6.23, 

(shown in the same scale). Actually, the broaching area was present in figures 6.22 as 

well, but was not plotted since it happens for headings more than 50 degrees. Such a 

heading can hardly be called quartering seas. 

The significant influence of diffraction forces 

is explained in [Spyrou, 1996] by increasing 

swaying and yawing excitation and phase shift 

mainly due to yawing. Increasing nominal 

Froude number may lead to interlacing 

between broaching and surf-riding attraction 

areas.

Using mixed initial conditions / control 

parameters planes allow the results of global 

analysis to be visible and makes it a useful and 

even practical tool. It is capable, for example, 

to show the effect of abrupt changes to speed while surf-riding. Actually, such changes 

may even lead to broaching [Spyrou, 1996]. 

6.5.6 Broaching as the Manifestation of Bifurcation of Periodic Motions 

The fourth scenario of broaching assumes that a ship is involved in periodic motions that 

may experience a dramatic increase of amplitude as a result of bifurcation [Spyrou, 

1997]. Following the same procedure, let us gradually increase commanded heading, 

which is our control parameter, and track the changes in amplitude of periodic motions. 

(Having in mind, of course, that the wave has to be steep enough to make nonlinear 

effects visible. However, it is not necessary that the nominal Froude number corresponds 

to wave celerity, in fact it may be lower.) Figure 6.24a shows systematic increase of 

amplitude of periodic motions while commanded angle is increased. 

When commanded angle reaches a certain threshold (0.2 in our example) the motions 

experience period doubling – the phenomena already known to us from nonlinear roll 

behavior. The original periodic motion loses stability, but a new type of steady motion 

appears, it has a period about two times more than the original motion. That is why it is 

called “period doubling”. Another name for this phenomenon is “flip bifurcation”, for 

details see subchapter 4.5.3. Further increases of commanded heading lead to more visual 

divergence of the first and second semi-periods of motions, (during each semi-period the 

system has two peaks, as in the full oscillation cycle) see fig. 6.24b. Attempts to increase 
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the commanded angle further lead to a sudden growth of the amplitude; however, it still 

has a double period, see fig. 6.25a. 

Fig. 6.24 Grow of amplitude of periodic motion with increasing of commanded heading          

[Spyrou, 1997] 

Further increases of commanded heading lead to a gradual decrease of the amplitude (see 

the case for C=0.3 in fig. 6.25b, and then back to one period mode C =0.45 in fig. 

6.25b.

Now let us start to decrease the commanded heading angle from the previously calculated 

steady state response. (Applying the same technique that was used to study jump in roll 

motion in beam seas, subchapter 4.5.2.) 

Fig. 6.25 High amplitude response: transition from low amplitudes (a) evolution of steady-state 

periodic motion with further increase of commanded heading [Spyrou, 1997] 
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Analogously to rolling in beam seas, there is no “jump back” to a smaller value of 

amplitude, but a systematic increase, see figure 6.25b. If the amplitude were plotted 

against commanded heading, we would see a typical jump picture with hysteresis, see fig. 

6.26.

The character of change of the periodic 

motion amplitude clearly indicates the 

presence of fold bifurcation. So, analogously 

to nonlinear roll in beam seas, we see a 

significant increase of the amplitude. It 

means, when the fold bifurcation occurs, we 

witness a dramatic increase of heading – a 

violent turning motion. Finally, fold 

bifurcation of periodic motion is the fourth 

mechanism of broaching and has to be 

avoided.

One of the ways to avoid it is by changing 

the autopilot gains. The differential gain is a 

parameter that determines the shape of the 

“response curve” – the dependence of 

amplitudes of periodic motion on 

commanded headings, see figure 6.27.

As can be clearly seen from this figure, the fold bifurcation disappears at certain values of 

differential gains. It does not mean that the large amplitudes of the periodic motion are no 

longer possible, however the transition will be smoother and less violent. Inertial forces 

caused by turning will be less and that would decrease the chance of capsizing The 

correct choice of autopilot gains (or more generally of control system gains) is capable of 

decreasing the danger of broaching. Detailed results of the influence of gains on motion 

are available from [Spyrou, 1997]. 

Concluding here the examination of 

broaching behavior, we went through 

typical stages of nonlinear dynamics 

analysis: search for the equilibria, a study 

of whether these equilibria are stable or 

not and how all of the above depends on 

control parameters. In addition to the 

equilibria we found other types of steady 

states of the system – periodical motions 

or limit cycles. Then we considered 

transitions between these steady states and 

found which of them could be identified 

as broaching. Analysis of influence of 

initial conditions helped us to understand 

the influence of control parameters on the 

boundaries between broaching domain and 

other types of behavior, in other words, 
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how likely broaching can occur for the a given nominal speed and course. Finally, we 

looked at the influence of autopilot gains on broaching likelihood. The latter holds most 

of the practical importance: it gives a tool to change autopilot design to make a ship safer 

at sea. 

6.6 Broaching and Capsizing
1

The above study revealed possible types of behavior of a ship in quartering seas along 

with the principle mechanics of broaching. Now, we show a different technique based on 

the same theoretical background of nonlinear dynamics. This technique, however, is 

especially focused on the capsizing outcome of broaching behavior. Its practical value 

was proven by a number of model experiments [Umeda, et al, 1999], [Umeda and 

Hamamoto, 1999] and finally it was used as a theoretical background for the design of an 

anti-broaching device [Umeda and Matsuda, 2000]. This subchapter is mainly based on 

[Umeda, 1999]. 

6.6.1 Analysis of Equilibria 

Following the previously described procedure, the first step of our study is to learn about 

equilibrium positions. Since we are working in 8-dimensional space, we can only work 

with projections. Some of the solution projections are shown on fig. 6.28.

Fig. 6.28 Equilibria in quartering seas [Umeda, 1999] 

The next step is to learn if the equilibria we found are stable or not: this procedure was 

already described in subchapter 6.3, so we go directly to the results from [Umeda, 1999].  

Calculation of the eigenvalues of Jacobean matrixes in the vicinity of both equilibria 

shows one positive real eigenvalue for all of them. So, both these equilibria are unstable. 

(At least for the ship that was chosen for being a sample – and in specific conditions 

only.) These eigenvalues are shown at fig. 6.29a and 6.29b. Fig. 6.29c shows behavior of 

the real positive eigenvalues vs. commanded heading, which is the control parameter.

                                                          
1 Written in co-authorship with Prof. Nayoa Umeda of Osaka University. 
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Eigenvalues allow us to see not only that the equilibria are stable or unstable, but also 

what kind of singularity points will correspond to these equilibria in phase space. The 

existence of one positive real eigenvalue indicates that we have a singularity point of the 

“saddle” type of index 1.

Fig. 6.29 Eigenvalues for equilibria at wave crest (a) and trough (b), real positive part eigenvalues vs. 

commanded heading (c) 

6.6.2 Invariant Manifold 

To find out about topology of the phase space we use invariant manifolds. As it was 

shown in subchapter 5.3.3 invariant manifolds can be calculated if eigenvectors are 

known.

Let us calculate the eigenvectors and focus on those corresponding to real positive 

eigenvalues that are “responsible for instability”. Looking at fig. 6.29 we see two pairs of 

complex conjugate eigenvalues and four real eigenvalues – three negative and one 

positive.  

Only one real eigenvalue is positive and “responsible” for the instability; so we have a 

one-dimensional unstable invariant manifold here. The remaining seven eigenvalues are 

complex with negative real parts or real negative; so these seven eigenvectors are tangent 

to the stable invariant manifold, which is a seven-dimensional hyper-surface. 

It is difficult to visualize a seven-dimensional hyper-surface, so let us focus on an 

unstable invariant manifold that is “simply” a line in a eight-dimensional phase space. 

Then we have to work with projections. 

To calculate the unstable invariant manifold, we follow the procedure described in 

subchapter 5.3.3. So, we put the system into unstable equilibrium and give it a small 

perturbation in the direction of the eigenvector corresponding to a positive eigenvalue, 

see Fig. 6.30. This would be our first starting point. To get another one, we perturb the 

system in the direction that is opposite to the eigenvector. 

Having these initial points, it is easy to calculate both branches of the manifold by 

numerical integration of the dynamical system (6.105). 
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Fig. 6.30 Eigenvectors [Umeda, 1999] 

6.6.3 Capsizing 

Let us consider projections of an unstable invariant manifold onto phase planes: ( G/ , u)

( , r), ( G/ , R) and (  p) – figures 6.31 (a, c, e, g) [Umeda, 1999]; (the scale was 

changed to make the geometry clear). The manifold is built for an unstable equilibrium at 

the wave crest with nominal Froude number Fn=0.3248 and desired course c=10
0
.

These projections allow a review of the entire broaching picture: ship moves downslope 

from the wave crest fig. 6.31a, heading angle increases fig. 6.31c, despite the autopilot 

deflected rudder on opposite side trying to keep course fig. 6.31e, heel angle increases 

significantly and the ship ends up capsizing fig. 6.31g. If the system were perturbed in the 

opposite direction, the same picture would be seen at the next incoming wave.  

Slight decreasing of number of revolutions (expressed here as nominal Froude number, 

that would be achieved with this number of revolutions in calm water) leads to dramatic 

changes in the entire motion of ship behavior. See projections of the unstable invariant 

manifold: figures 6.31 (b, d, f and h). Now, if the system were perturbed forward, the ship 

would capsize in the same way as before. However, if perturbed in the opposite side, the 

ship would experience periodic motion. 

As we pointed out before, such drastic changes in phase portrait due to small changes of 

the control parameter is a result of global bifurcation. As can be seen from all the above 

figures, a critical point exists somewhere between Froude numbers Fn=0.3248 and 

Fn=0.3247 (marked as Fncr, see fig. 6.32). An unstable invariant manifold, being started 

from an unstable equilibrium at the crest of wave 1, leads exactly to the unstable 

equilibrium at the crest of wave 2. 

So, a trajectory connecting two different saddle points exists in this case. Such a structure 

is known in nonlinear dynamics as a “heteroclinic connection” (from the Greek word 

“heteros” – different) and the global bifurcation is known as a “heteroclinic bifurcation”. 

This yields a very important practical outcome: inevitable capsizing due to broaching can 
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be identified with heteroclinic bifurcation. Since the last one is computable by means of 

nonlinear dynamics, it can be considered as a physical criterion of stability for broaching 

in regular seas.

Fig. 6.31 (a through f) Projections of unstable invariant manifold Fn=0.3248 (a, c, e)  

and Fn=0.3247 (b, d, f) 
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Fig. 6.31 (g and h) Projections of unstable invariant manifold Fn=0.3248 (g) and Fn=0.3247 (h) 

Fig. 6.32 Development of global bifurcation in surging phase plane 
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Chapter 7 

Other Factors Affecting Capsizing 

7.1 Aerodynamic Forces and Drift 

The basic assumed situation adopted by all stability regulations is the following: a ship is 

situated in a beam position relative to wind and waves with a sudden squall acting on the 

ship. All navigation experience leaves no doubt that wind is the major factor of influence 

on ship safety. The problem of a ship heeling under action of wind is a long-term subject 

of interest for naval architects. Significant contribution in this area was made in the 

1950’s when physically based stability criteria were developed see, for example, 

[Blagoveshchensky, 1951, 1965], [Yamagata, 1959]. 

An extensive research program on wind–and-drift influence on stability was carried out 

by the National Laboratory of Seakeeping of Fishing Vessels at Kaliningrad Institute of 

Technology (Russia). One of the authors was director of this laboratory and supervisor of 

this program. Only a few results of this program were published in English [Makov and 

Sevastianov, 1993, 1994a] and [Belenky, 1993a, 1994]. So it would be worthwhile to 

review these results here; of course there are many more results available on the subject 

(see, for example [Fediaevsky and Firsov, 1957], [Kinoshita and Okada, 1957] and 

others), however the scope of the book does not allow us to review them all. The results 

of the above program are reviewed in subchapters 7.1.1 through 7.1.5, while subchapter 

7.1.6 is focused on the background of classical weather criterion. 

7.1.1 Steady Drift 

Theoretical analysis showed that inertial forces of an aerodynamic nature are small in 

comparison with aerodynamic forces of a vortex nature when considering the action of a 

squall on a ship [Makov, et al 1987]. Using this conclusion we will consider only non-

inertial aerodynamic force. However, the problem of ship motion under a squall or gust 

of wind remains quite complex both in aerodynamic and hydrodynamic aspects. We 

begin our discussion from the simplest case: steady state drift of a ship in calm water. 

An assumed scheme of force application is given in fig. 7.1. We suppose the principal 

vector of aerodynamic forces is applied at point A and principal vector of hydrodynamic 

force is applied at point H. Stable state drift leads to a change in volume displacement by 

value V1 in comparison with the state without drift. 
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Fig. 7.1 Scheme of application of forces during stable state drift 

The gravitational force is applied at point G, it is equal numerically to weight 

displacement, original gV with the addition of gV
1
. Buoyancy forces are applied at 

points C and C1 respectively. Taking into account that WgV , the following system of 

force equations can be written: 
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, following [Makov, et al 1987] we neglect terms 
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1
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7.1.2 Aerodynamic Forces 

Let us consider the aerodynamic components of the equation (7.4) in detail. These forces 

and moments are the results of the interaction of airflow with the ship sides, 

superstructures and decks. Contemporary CFD (computational fluid dynamics) 

technology allows these components to be evaluated numerically, however model tests 

still play an important role as a source of information, see for example [Brizzolara and 

Rizzuto 2006]. 

Here, we review experiments done by Ortiz [1985] in a towing tank and hydrochannel. 

When modeling was carried out in a hydrochannel or in a towing tank, the airflow was 

modeled with water flow. The model was placed in an upside down position and flow 

velocity (or carriage speed) was chosen to avoid wave generation. Similarity by Reynolds 

number was not kept. 

To mitigate scale effect, tests were repeated with different model scales and using 

different experimental facilities: hydrochannel and towing tank of the Kaliningrad 

Institute of Technology (KTI) and the large hydrochannel of the Scientific and Industrial 

Corporation of Commercial Fishery (SICCF, Kaliningrad, Russia), see table 7.1. 

Table 7.1 Summary of some model tests to estimate aerodynamic forces 

No. Test data Wind tunnel 

[Fediaevsky and 

Firsov, 1957] 

Hydro-

channel KTI

Hydro-

channel

SICCF

Towing tank 

KTI

1 Year 1957-58 1982 1983 1984 

2 Measured width, m 2.25 1.00 3.00 7.00 

3 Model scale 1:24 1:65 1:22 1:22 

4 Model length , m 1.631 0.602 1.806 1.806 

5 Model breadth, m 0.304 0.112 0.336 0.336 

6 Velocity, m/s 35 0.45-0.55 0.7-0.9 0.7-0.9 

7 Reynolds number 7.27 10
5
 0.45 10

5
-

0.55 10
5

2.00 10
5

-2.80 10
5

2.00 10
5
-

2.80 10
5

Ortiz [1985] used models of a medium size Russian trawler. All three aerodynamical 

components were measured (usually such experiments provide only the horizontal and 

moment components – such as [Fediaevsky and Firsov, 1957]). 

The results of these model tests on the horizontal aerodynamic component are shown in 

fig. 7.2; the vertical component data are shown in fig. 7.3; and the moment component is 

shown in fig. 7.4. All the results are presented in the non-dimensional form: 

W
A

aW
DA

aAY A
u

CA
vu

CF
22

)( 22

0  (7.5) 

W
A

aW
DA

aAZ A
u

CA
vu

CF
22

)( 22

0  (7.6) 
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)(
2

)(
2

)( 22

0 dzA
u

CdzA
vu

CM AW
A

aMAW
DA

aMAX  (7.7) 

Here, uA is wind speed, vD is drift speed, AW is windage area. We have neglected drift 

speed as a small value in comparison with the wind velocity. 

Fig. 7.2 Horizontal aerodynamic component (1-wind tunnel [Fediaevsky and Firsov, 1957], 2-

hydrochannel KTI, 3-towing tank KTI, 4-hydrochannel SICCF (1983), 5-hydrochannel SICCF 

(1984)) 

Fig. 7.3 Vertical aerodynamic component (1- hydrochannel SICCF (1983),  2-towing tank KTI, 3- 

hydrochannel KTI, 4-hydrochannel SICCF (1984)) 

Fig. 7.4 Vertical aerodynamic component (1- hydrochannel SICCF (1984),  2-hydrochannel SICCF 

(1983)), 3-towing tank KTI) 
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Test results of Ortiz [1985] show that the vertical component is of the same order as the 

horizontal component and it should be taken into account. The other result of the 

aerodynamic research are practical recommendations that were prepared on the 

background of model tests of a Russian medium fishing trawler, a Cuban fishing vessel 

and a schematized parallelepiped ship model. The following formulae were proposed for 

the moment of aerodynamic force: 

MMM CCC 0  (7.8) 

)47.01()]}6.16.2([25.30.4{

100042.0945.0

10250097.0000.1

0

0

00

BWBBSM

M

lbllC

for

for
C

 (7.9) 

Here: lS is total relative length of superstructures, that is the total length of superstructures 

divided by the length of the ship; lB is total relative length of bridges, lBW is total relative 

length of bulwark, bB is average breadth of bridges divided by the breadth of the ship. 

The last quantity can be defined by the following formula: 

N

i

Bi

N

i

BiBi

B

lB

bl

b

1

1  (7.10) 

Where: lBi is length of bridge i and bBi is breadth of bridge i.

7.1.3 Hydrodynamic Drift Forces 

Garkavy, et al [1982] conducted a series of model tests in the towing tank of the National 

Laboratory of Seakeeping of Fishing Vessels (Russia). The model was towed sidewise in 

the towing tank; drift force and its moment were measured. The series consists of 11 

models; their characteristics are given in Table 7.2, taken from [Garkavy and Kovalenko, 

1989].

Table 7.2 Characteristics of models used by Garkavy and Kovalenko [1989] 

L L/B B/T CM CB 2(H-T)/B

1.498 5.095 2.430 0.830 0.552 0.245 

1.498 3.500 3.537 0.830 0.552 0.168 

1.498 7.000 1.769 0.830 0.552 0.336 

1.498 5.095 4.900  0.830 0.552 0.245 

1.498 5.095 1.500 0.830 0.552 0.245 

1.498 5.095 2.430  0.830 0.415 0.245 

1.498 5.095 2.430  0.830 0.654 0.245 

1.498 5.095 2.430  0.986 0.552 0.245 

1.498 5.095 2.430  0.704 0.553 0.245 

1.508 4.710 2.460  0.900 0.520 0.225 

1.607 7.372 2.270  0.980 0.637 0.330 
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All the models were equipped with a bilge keel, with the height according to the 

following formula: 

22)2/(045.0 dBhBK  (7.11) 

Since only the horizontal component was measured, the true coordinate of the point 

where hydrodynamic force zH was applied cannot be obtained from these experiments. 

However, the measured moment is evidently a true moment being created by the whole 

hydrodynamic force. To avoid error related to neglecting the vertical component, we 

introduce the concept of a pseudo-centre of hydrodynamic force application. The 

horizontal component of the force being applied at this point yields the same value as the 

moment that exists in reality. Therefore, we can predict the elevation of this pseudo-

centre from measurements [Garkavy and Kovalenko, 1989]. The results of these 

measurements are given in tables 7.3 and 7.4. These results are presented in the usual 

form (elevation of the pseudo-center was presented in a semi-fixed system of 

coordinates):

cos;
2

2

0 HPHPD
D

HHY zA
v

CF  (7.12) 

Here AD is the area of diametrical section of the submerged part of a ship. 

Table 7.3 Coefficient of horizontal hydrodynamic component CH

Model

No.

0
0
 10

0
 20

0
 30

0
 40

0
 50

0

1 0.832 0.948 0.824 0.997 0.971 1.113 

2 0.709 0.934 1.117 1.299 1.528 1.945 

3 0.927 0.958 1.000 0.868 0.869 0.773 

4 0.629 0.959 1.167 1.316 1.631 1.799 

5 0.999 0.986 0.893 0.803 0.769 0.785 

6 0.887 1.107 1.112 1.136 1.112 1.148 

7 0.747 1.071 1.261 1.443 1.715 1.817 

8 0.979 1.100 1.227 1.259 1.396 1.468 

9 0.835 0.711 1.095 1.067 1.249 1.282 

10 0.907 1.050 1.131 1.129 1.180 1.218 

11 1.224 1.297 1.327 1.274 1.219 1.145 

Formula for coefficient CH can be obtained from this data by regression analysis. The 

following formula was proposed in [Belenky, 1994]: 

4

1

0 )()()(
i

iiHH parfCC  (7.13) 

Where CH0( ) is the coefficient for the basic series of models, fi( ) is the function of 

influence of geometric parameters and pari are the geometric parameters. The following 
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geometric characteristics can be used as influencing parameters (index "0" means that 

these characteristics belong to the basic model of the series): 

1. 01 // BLBLpar
 1.

095.5/ 0BL

2. 02 // dBdBpar
2.

43.2/ 0dB

3. 03 // LdLdpar  3. 0.0808/ 0Ld

4. 04 // MBMB CCCCpar
 4.

0.665/
0MB CC

Where: L is waterplane length; B is breadth; d is draught; CB is block coefficient; CM  is 

midship section coefficient. Coefficients for basic model and influence functions are 

given in tables 7.5 and 7.6 correspondingly. 

Table 7.4 Relative elevation of pseudo-centre of hydrodynamic force HP

Model

No.

0
0
 10

0
 20

0
 30

0
 40

0
 50

0

1 0.0859 -0.1080 0.3660 0.9090 1.5040 1.4390 

2 -0.0912 -0.0916 1.1900 2.0530 2.1000 1.7460 

3 0.1680 0.0548 -0.0114 0.2350 0.4520 0.7540 

4 0.4430 -0.4970 0.9400 2.1260 2.5670 2.7600 

5 0.1607 0.1297 0.4200 0.6875 0.9230 1.1950 

6 0.2390 -0.0449 0.1976 0.5730 0.9000 1.2350 

7 0.1890 -0.0643 0.8580 1.1780 1.0250 0.9840 

8 0.1436 -0.0472 0.3590 0.8000 0.8820 0.9040 

9 -0.1539 -0.0916 0.6470 1.1320 1.0440 1.1390 

10 0.1097 -0.1060 0.2410 0.7770 1.069 1.1470 

11 0.0683 0.0147 0.0409 0.2317 0.4740 0.8825 

Table 7.5 Coefficients for basic model

deg. 0 10 20 30 40 50 

CH0( ) 0.832 0.948 0.874 0.997 0.971 1.113 

Table 7.6 Functions of influence 

 deg. 0 10 20 30 40 50 

f1 0.6221 0.3251 0.7319 0.3929 0.2266 0.1603 

f2 -0.09453 -0.001378 0.1216 0.1419 0.2701 0.3026 

f3 0.5686 1.32 1.009 0.8789 0.9936 0.8698 

f4 -0.5608 -0.3085 -0.1047 0.8326 1.736 2.249 
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Makov [1985] added several tests to the Garkavy series and carried out regression 

analyses for pseudo centre elevation. Results are also available from [Makov, et al,

1987], [Makov and Sevastianov, 1993]. The following formula is proposed: 

z T f parHP i i

i

( ) ( )
1

5

 (7.14) 

Where zHP( ) is the coefficient value for the basic model of the series; fi ( ) are 

coefficients of parameters (see Table 7.7); pari are the parameters:  

1 . par1 =  1  1. par2 = B / T

2. par3 = d
2. par4 = CB / CM

3. par5 = L / B 3.

Here, d is the angle at which the deck enters into the water while the ship is heeling (in 

degrees).

Table 7.7 Coefficients for formula (7.14) 

 deg. 0 10 20 30 40 50 

f1  2.548  2.819    3.451   5.355   3.102   1.277 

f2 -0.027 -0.022 -0.103   -0.423  -0.424   -0.487 

f3   0.002 0.009   0.011   0.019   0.007   0.019 

f4 -2.414 -3.635 -6.590 -11.356 -14.111 -12.983 

f5 -0.046  0.037   0.267   0.525    1.198    1.256 

The following formula describes the whole heeling moment due to steady state drift: 

cos)(0 HPAHX zzFM  (7.15) 

This moment depends on heel angle. Being plotted together with the GZ curve, it allows 

finding the angle of heel that corresponds to the new equilibrium position during steady 

state drift, fig.7.5. 

Fig. 7.5 Scheme of definition of angle of heel caused by drift 
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7.1.4 Sudden Squall of Wind 

Sevastianov [1970] considered transition drift behavior under action of a sudden squall of 

wind. The following equation for horizontal ship motion was used: 

SYAYGHYG FFyFayam 000024022 )()(  (7.16) 

Here, FY0S  is the additional horizontal aerodynamic force that appears due to a sudden 

wind squall. We neglect the term 24a  and obtain the isolated drift equation: 

pyby GG

2

00  (7.17) 

With 

22

00

22

;
)(2 am

FF
p

am

AC
b SYAYDH  (7.18) 

The expression (7.17) is an ordinary nonlinear differential equation. It can be solved 

analytically and the relationship between drift velocity and time can be expressed in the 

following way: 

0tanhar
1

tanhar
1

v
p

b

bp
v

p

b

bp
t  (7.19) 

Here, Gyv 0 is transient drift velocity and DG vtyv )( 000  is the initial condition at the 

moment of squall initiation. It is equal to the velocity of stable state drift caused by 

aerodynamic force FA. Formula (7.19) was obtained by Blagoveshchensky in [1965] with 

the assumption that squall starts when v0=0 and FY0A=0. The solution by Sevastianov 

[1970] is free from these assumptions and it can be rewritten as follows: 

))exp(1())exp(1(

))exp(1())exp(1(

0

0

tvt

tvt
v  (7.20) 

Where: DSvvv / ; DSvvv /00 ; DSbv2 ; vDS is drift velocity of stable state drift caused 

by aerodynamic forces SA FF  and can be found using equation (7.12) as 

DHSASD ACFFv /)(2 . Acceleration of the drift motion can be easily derived: 
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The term in the numerator: 
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 (7.22) 
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It is can be seen clearly that formula (7.21) expresses drift acceleration at the beginning 

of the squall. It can also be obtained from equations (7.17) and (7.18) by substitution 

0vv . So, we can express acceleration analogously to (7.20): 

2

0

0
))]exp(1())exp(1[(

)exp(
4

tvt

t
y G  (7.23) 

Where:

)(/ 0000 tyyy GGG

The following equation models heeling due to wind : 

SXAX

HXGXDxx

MM

MyaGZmgMaI

00

002444 )()()(
 (7.24) 

Here, MX0S is the additional aerodynamic moment caused by a sudden squall. We assume 

the angle of heel to be small enough to use 1cos  and collect all independent terms of 

the equation (7.24) on the right hand side. We consider these terms as the heeling 

moment due to combined action of aerodynamic and hydrodynamic forces: 

GHPHASYAY

HXGAXAXX

yazKGFKGzFF

MyaMMM

02400

0024000

)())((
 (7.25) 

All the moments are written relative to the center of gravity. If we take into account that: 
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The whole heeling moment con be expressed as: 
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 (7.28) 

Now it can be clearly seen from formula (7.28) that heeling moment during transient drift 

is dependent on time. This dependence has an asymptotic exponential character: see 

formulae (7.20) and (7.23). Calculation of the time when the heeling moment is 

increasing shows that this figure several times exceeds the natural period. It means that 

ship capsizing due to a sudden squall does not necessarily occur in the first period of roll 

motion. The possibility of the capsizing during the second and consequent period of 

oscillation was proved by special model tests carried out by G. N. Egorov in the towing 

tank of Kaliningrad Institute of Technology [Sevastianov, 1970]. 
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7.1.5 Method of Energy Balance

Let us consider ship rolling under the action of regular waves and constant wind: 

AE mtf sin2 2  (7.29) 

Here: mA is heeling moment caused by wind. 

We rewrite the equation (7.29) as first integrals. For this purpose we can express roll 

acceleration as: 

d

d

dt

d

d

d

dt

d
 (7.30) 

Then we substitute expression (7.30) in the rolling equation (7.29); multiplying by d  : 

dmdtdfdd AE sin)(2 2  (7.31) 

Moving all terms containing d  to the left side of the equation, we integrate both parts 

starting from the initial conditions 00 ,  until some instance of time t, when heel and 

angular velocity are equal to values  and :

00

0

000

)(2sin 2 dfddmdtd AE
 (7.32) 

We have derived the equation in first integrals, which reflects a balance of changing 

energies and works of different moments during time range from 000 ,t  to ,t .

Let us examine the terms of the equation in first integrals focusing on their physical 

meaning. The first term: 

),(
22

0

2

0

2

0

Kd  (7.33)  

It is evident from (7.33) that this term expresses a change of kinetic energy. Consider the 

second term: 

 ),(),(2 00

0

ttAAd DD  (7.34) 

This is the work of the damping moment, which has been done during the given time 

range. In other words, this is the energy, which has been dissipated during this time. It is 

dependent on heel angular velocity, so it is better to write as versus time. The third term: 

 ),()( 0

2

0

Pdf  (7.35) 

This is the work of the restoring moment. It also can be associated with changes of 

potential energy and expressed through corresponding values of a dynamic stability 

curve. The fourth term: 



Chapter 7 256 

),(),,,(sin 000

0

ttAttAdt EEE  (7.36) 

This is the work of the wave excitation moment. The fifth term: 

),( 00

0

AAA Amdm  (7.37) 

This is work of the aerodynamic heeling moment. 

Using this newly accepted nomenclature, we can rewrite the equation in first integrals 

(7.32) as an energy work balance equation: 

),(),(),(),()( 00000 ttAAPttAK EAD  (7.38) 

The weather criterion is based on equalization of potential and kinetic energy. Here, we 

show what assumptions lead to these kinds of simplifications of the energy balance 

equation (7.38). 

Let us look at the energy balance of the linear system at steady state regime under 

constant wind. Assume the following form of the solution: 

Wa tsin  (7.39) 

Where W is the static angle of heel caused by constant wind. Change of kinetic and 

potential energy does not depend on the particular form of the solution. The derivation of 

work of constant aerodynamic moment does not pose any problem, so we have to focus 

on work of damping and excitation moments. Assuming linear or linearized damping, we 

substitute solution (7.39) into the formula for work of damping moment (7.34) : 
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 (7.40) 

Let us consider work of wave excitation. As it is well known excitation plays a dual role 

in periodical motions: it compensates for losses from damping and forces the dynamical 

system to oscillate with the same period as that of the excitation (synchronization):
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 (7.41) 

Integration is straight forward here: 
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 (7.42) 

Here, AEsync is a portion of the external work that is used for synchronization of excitation 

and oscillations; AEAct is a portion of excitation work that is used for compensation of 

damping loses. This part of external work is usually called “active”.

Since our system (7.29) is assumed linear or linearized, we can apply well-known 

formulae for amplitude and phase of linear steady state solution:  
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This implies: 
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We substitute formulae (7.43) and (7.44) into equations (7.40) and (7.42): 
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That means that the work of damping equals the active work of excitation, which allows 

separating the energy balance equation (7.38) in two: 

ttAttA EActD ,, 00  (7.48) 

),(),(),(),( 0000 ESyncA AAPK  (7.49) 
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Let us expand change of kinetic and potential energy as well as the work of the 

aerodynamic heeling moment in the same manner we have done for damping and 

excitation: 
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Following the previous procedure and substituting (7.43) into (7.50)-(7.52): 
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Having in mind that:
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A
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 (7.56) 

Expression (7.55) could be rewritten as: 
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We can see that equation (7.49) is perfectly satisfied. Time histories of all the energies 

and works are shown in fig. 7.6. 

Fig. 7.6 Time histories of work and energies for linear steady-state rolling 

Now, let us introduce a nonlinear GZ curve into the equation (7.49). The change of 

potential energy in this case is expressed as: 
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With:  
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We assume that for the nonlinear system there is a separate balance between damping and 

excitation works and between kinetic and potential energies as it takes place for linear 

systems in a steady state regime:  
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Equation (7.60) does not have the term describing the work of the synchronizing 

component of wave excitation. So it is satisfied only twice during a period, when all the 

terms become zero (see fig. 7.6), but we are free to choose the initial conditions 00 ,

Let us start from the negative amplitude: 

0; 00 Wa  (7.61) 

Then, the values after the half of a period would be the following: 

0
2

;
2

00

T
t
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t Wa  (7.62) 

The balance of energy would be described as: 

aAWafWaf mpp 2)()(2  (7.63) 

Now, let us assume that a wind gust was applied at the moment t0. This wind gust creates 

an additional heeling moment: 

AGAA mmm*  (7.64) 

The work of the wind heeling moment taking into account the gust is: 

aAGAAAA mmmdmttA 0

**

0

0

),(  (7.65) 

The application of the gust of wind generates a transition process that breaks the 

conditions for separate energy balance equations (7.48) and (7.49), since they are held 

only for steady state motion of a linear system. However, if we assume that the transition 

does not affect the energy balance, we can rewrite the energy balance equation as: 

aAGAWafWf mmpp )()(2  (7.66) 

The equation (7.66) allows determining an extreme angle the ship would have after half 

of a period (when roll velocity would reach zero). Geometrically the equation (7.66) 

expresses equality of two areas, see fig. 7.7.

Fig. 7.7 An evaluation of dynamic angle of heel caused by sudden wind gust 
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We actually derived the weather criterion with a dynamically applied constant wind 

heeling moment (see also subchapter 3.5.1 of [Kobylinski and Kastner 2003]). Capsizing 

is associated with the impossibility to find roll angle  that is considered as dynamical 

heel angle. The reason for this is the lack of the area under the GZ curve. Physically it 

means that potential energy of roll motions is insufficient to balance the work of the 

heeling moment. The system jumps out of the “potential well” to find the energy balance 

near another stable equilibrium.  

Despite a “physically sound” capsizing definition, we made two serious assumptions to 

simplify the derivation and facilitate the solution: 

We assumed that a nonlinear system has a balance for wave excitation and damping 

separate from the work of the wind heeling moment, kinetic and potential energy; 

The transition process does not break the above assumption when the wind gust is 

applied.

Another possible way to interpret (7.66) is to consider a non-forced and non-damped 

system. In this case the equation (7.50) describes the energy balance completely. Both of 

the above assumptions become true and the determination of stability with the weather 

criterion becomes identical to the classical definition of stability (subchapter 5.1).

7.2 Influence of Freeboard Height and Water on Deck 

7.2.1 General 

Usually, there is a significant difference regarding capsizing behavior in beam seas of 

high freeboard and low freeboard vessels. Let us consider the simplest situation: the 

action of a suddenly applied constant heeling moment in a beam position on a ship. It is 

known (Sevastianov [1970], Nechaev [1989]) that if a high freeboard ship capsizes, she 

capsizes in the first semi-period of roll oscillation. A low built vessel withstands several 

periods of rolling and then capsizes when drift is practically static: see fig. 7.8. 

The reason for the difference is that the deck enters the water much earlier in the case of 

the low freeboard ship. This evident fact changes the whole picture. The deck edge is a 

sharp body and produces vortexes. This leads to a significant increase of roll damping.  

Increasing damping makes the roll amplitude smaller in comparison with the case of a 

high freeboard ship (where the deck enters into the water too late for increased damping 

to prevent immediate capsizing). Therefore, the low freeboard ship has time for beam 

drift to develop. The moment of the hydrodynamic force (subchapter 7.1) combined with 

the heeling moment increases the chances for a ship to capsize.  

For the case of quartering seas, the difference in behavior between high and low 

freeboard ships is not that significant. The picture of capsizing is more complex. 
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7.2.2 Experimental Observations. Pseudo-static Heel 

When the deck emerges from the water after submerging, some quantity of water is 

trapped in the deck well. Then, this water flows out through freeing ports in the bulwark. 

The process of water outflow takes some time, fig. 7.9. This water can be considered as 

liquid cargo during this time. So, we can consider the stability of a ship with a liquid 

cargo of varying volume [Rakhmanin, 1966, 1966a, 1971], [Sevastianov, 1970]. 

Fig. 7.8 Differences in capsizing scenario of high 

freeboard and low built ships under action of 

dynamically applied heeling moment 

Fig. 7.9 Dependence of outflow time on initial 

level of deck well flooding 

Experiments [Rakhmanin, 1966, 1966a, 1971] showed that rolling of a low freeboard 

ship is asymmetric (see subchapter 3.3.6 of [Kobylinski and Kastner 2003]). Rolling 

oscillations occur relative to a certain position that is called a pseudo-static angle of heel. 

Characteristics of models of small and medium fishing vessels used for these tests were: 

angle of deck submerging from 6 to 15 degrees, B/T from 1.9 to 3.0 and CB from 0.4 to 

1.0. Models were equipped with superstructures. Qualitative results are presented in fig. 

3.14 of [Kobylinski and Kastner 2003]. 

Three curves show the extreme of roll angles versus excitation frequency along with the 

value of the pseudo-static angle. The pseudo-static angle of heel could not be determined 

clearly in the region of principal resonance. It can be explained that the principal rolling 

resonance is observed in relatively long waves and diffraction is small, so the deck can be 

flooded from both sides.
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Parametric resonance due to heave coupling (subchapter 6.2) was observed in short 

waves, where diffraction is significant. So, wave height is greater on the “windward” side 

and less on the “leeward” size. That leads to deck flooding though the “windward” side 

and respectively to development of pseudo-static angle of heel in the region of parametric 

resonance.

Presence of the bulwark leads to an increase of pseudo-static heel because of an increased 

amount of water on deck and a decrease of rolling caused by an increase of roll damping. 

The value of the pseudo-static angle of heel is very close to the static initial heel caused 

by liquid cargo on deck.

Garkavy and Ponomarenko [1977] carried out another series of model tests in the small 

tank of the National Laboratory of Seakeeping of Fishing Vessels at Kaliningrad Institute 

of Technology (Russia).

A schematized cylindrical model with midship section of a medium trawler had the 

dimensions LxBxT=0.635x0.182x0.085 m. The tank was equipped with a pneumatic 

wave maker. The model was located in beam waves and was kept in this position by two 

ropes attached fore and aft. The model was equipped with a bulwark of 0.02 m height. 

Two KG values were set up KG1=0.061 m and KG2=0.056 m. Rolling was recorded with 

a camera. Results of the model test are presented in fig. 7.10 (for KG1=0.061 m) and in 

fig. 7.11 (for KG2=0.056 m). 

Fig 7.10 Model response for KG=0.061 m [Garkavy and Ponomarenko, 1977] 

There were a total of 35 runs, a number near a point in fig. 7.11 and fig. 7.12 marks the 

number of the run. The legend is the following: 

A circle marks a test where pseudo-static angle could not be determined clearly; 

A black triangle means that the model capsized after several roll oscillations; 
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A rectangle means that model behavior was very close to capsizing; 

A white triangle marks the test where pseudo-static angle was observed and 

determined. 

Fig. 7.11 Model response for KG=0.056 m [Garkavy and Ponomarenko, 1977] 

The model behavior substantially depended on excitation frequency. If the relative 

frequency  was less than 0.95, water being trapped on deck at one side immediately 

flowed out through the other side, since the forces acting on the trapped water were large. 

When the relative frequency was between 0.95 and 1.15, heaving motion becomes 

significant and behavior of the trapped water was the same: the model receives water 

through the “windward” side and outflow is through the “leeward” side. 

When the relative frequency reached the range 1.15-1.47, trapped water outflow through 

the “leeward” side decreased. Collection of the water leads to the appearance of pseudo-

static heel. Capsizing of the model was related with the increased amount of trapped 

water and increase of pseudo-static heel. Heave motion played the main role when the 

relative frequency was between 1.47-1.7. The amount of trapped water on deck became 

constant and regime of roll became steady state. 

7.2.3 Behavior of Water on Deck
1

Let us assume first that the bulwark is high and outflow of the trapped water is not 

significant. Then the water is involved in a complex motion caused by rolling and other 

                                                          
1 Written in co-authorship with Prof. Stefan Grochowalski of Webb Institute. 
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ship motions. If there is enough water on deck, it influences the motion of a ship, so we 

have a coupling problem  [Dillingham and Falzarano, 1986]. 

An analogous problem exists for rolling / sloshing coupling for a ship with partially filled 

tanks (see for example [Francescutto and Contento, 1994], Armenio, et al [1996], de Kat 

[2000]). However, there is a significant difference between sloshing and green water 

influence on subsequent ship motions. Water on the deck has shallow depth, but large 

stretching. Fluid in a tank is limited by the size of the tank. Also the main concern 

associated with low-filling sloshing is focused on hydrodynamic impacts rather than on 

altering ship behavior (because of low filling, there is not enough fluid to change ship 

behavior considerably).

There is a more similarity though with behavior of water in a flooded car deck of a Ro-

Ro ferry; here, we also have shallow water and large stretch (see for example [Vassalos, 

2000], [Naito and Sueyoshi, 2001]). However, consideration of stability of damaged 

ships is beyond the scope of this book.

Garkavy [1991] proposed the following approximate method for the estimation of heeling 

moment due to water on deck: 

M W lXWOD WOD dsin /  (7.67) 

With: 

W

W

B
DWWOD h

C

C

T

B
Al 21.0  (7.68) 

Here, ADW is relative area of the deck well. For the height of the water on the deck well 

the following empirical formula is proposed: 
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Here: A is amplitude of the previous semi-period of oscillations, B is the angle when 

bulwark enters water, hB is bulwark height: 

B

hTH B
B

)5.1(2
arctan1  (7.70) 

Amagai, et al [1994] proposed classification of the characteristic behavior of trapped 

water on deck, obtained from experiments with an oscillating tank: 

The shape of the free surface was kept approximately horizontal and behaved as a 

standing wave; 

The same as above, but with some transient waves; 

The same as above, but when roll reaches the amplitude value, the surface is 

approximately horizontal; 
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A large transient wave appears and the surface becomes nonlinear; 

There are two transient wave profiles in opposite directions. 

The above experiments were followed by model tests in a towing tank that were focused 

on the influence of trapped water on the behavior of the ship roll response [Amagai, et al,

1994]. A model of a Japanese fishing vessel with the scale 1:7.6 and dimensions 

LxBxHxT=2.0x0.5x0.195x0.175 m was used in these experiments. The deck well of this 

model had the same form and dimensions as the oscillating tank. The model was tested in 

regular beam waves and trapped water outflow was not modeled. Results were presented 

in the following form: 

 )(/ 21 waa hf  (7.71) 

Where: a1 is the amplitude of ship roll response without water on deck; a2 is the 

amplitude of ship roll response with water on deck; hw is the level of water on deck. 

A sample of these results is shown in fig. 7.12. One can see from the patterns shown in 

fig. 7.12 that water on deck can influence rolling in both directions: increasing and 

decreasing.

Fig. 7.12 Influence of water on deck level on rolling amplitude response [Amagai, et al, 1994] 

Huang and Hsiung [1996] considered the problem of greenwater behavior as a shallow-

water flow problem. The “Flux Splitting Difference” method was developed for 

computation forces and moments for the 3-D case. Numerical results were validated with 

the model test data [Huang, 1995]. An example of the free surface profile is given in fig. 

7.13 [Grochowalski, et al, 1998], and experimental results were taken from [Adee and 

Caglayan, 1982]. 

As can be clearly seen, the water flow makes a bore profile, simulation results are quite 

close to experimental. One of the main difficulties here was the numerical treatment of 

hydraulic jump associated with the bore. 

Two more problems are related with the influence of greenwater: 
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How to estimate the amount of water trapped on deck; 

How and what amount of green water would escape from the deck. 

Fig. 7.13 Water on deck: wave profile caused by roll [Grochowalski, et al, 1998] 

Grochowalski, et al [1998] addressed both of these problems. First, it is difficult to get 

adequate estimates of the amount of trapped water using solely statistical characteristics 

of relative motion obtained from traditional seakeeping calculations in the frequency 

domain. This difficulty is caused by the fact that the amount of water trapped on deck 

depends heavily on the details of the ship’s geometry, while any statistical characteristics 

represent only vertical motion of water surface relative to bulwark edge. In other words 

“… different ship geometries or the sea states with the same statistical parameters may 

lead to different amount of water shipped on deck” (cited with the above reference). 

The alternative is time domain simulation, based on a theoretical model [Grochowalski, 

1979, 1981], [Grochowalski, et al, 1998], [Huang, et al, 1999]. Two conditions have to 

be satisfied for water to be trapped: wave height has to exceed bulwark or deck edge and 

relative velocity of liquid particles has to be directed inward onto the deck: 

0

)()(

Rn

BW

v

tZt
 (7.72) 

Here, W  is instant wave elevation and ZB is the elevation of the point B, which is the 

highest point of the bulwark or deck edge in the current section, vRn is the normal 

component of the liquid particle relative velocity directed inward onto the deck, see fig. 

7.14.

Wave motion can be presented as the sum of two components: incident wave and wave 

deformation caused by the presence of a ship that includes radiation and diffraction. 

 )()()( 0 ttt WDWW  (7.73) 

Relative horizontal velocity can be presented as: 
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vW(t) is the horizontal component of the liquid particle velocity due to undisturbed wave 

motion, vs(t) is the horizontal component of motion of the point B, vD(t) is the additional 

velocity reflecting influence of wave deformation. The last quantity is modeled using the 

energy conservation for the hydraulic head [Grochowalski, et al, 1998]: 

)()(2)( tZtgtv BWD  (7.75) 

Fig. 7.14 Water shipping on deck [Grochowalski, et al, 1998] 

To evaluate the amount of water trapped on the deck at the moment, we express 

elementary mass passing through elementary area dzds  as: 

dttzsvdzdsdVdm Rn ),,(  (7.76) 

The total mass trapped from the moment tb, when the wave surface reached point B, until 

moment te, when the wave receded, can be found by the integration of the expression 

(7.76) in time and space: 
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Formula (7.77) was validated by model experiments conducted in the towing tank of the 

Institute of Marine Dynamics (Canada). A cylindrical model was equipped to measure 

the quantity of trapped water, the deck was open on both the weather and lee side. A 

comparison of experimental and calculation results are presented in the fig. 7.15. 

Another problem is associated with greenwater escape from the deck well. There were a 

series of model tests carried out in the Center for Marine Vessel Development and 

Research of the Dalhousie University in Halifax. Water escape from the deck was 

modeled with an oscillating rectangular tank; two modes of water flow were observed: 

“waterfall” and “splash”. More water escapes with the first mode. The following 

formulae were developed to calculate the amount of water escaping from the deck: 
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Fig. 7.15 Computed and measured mass of green water [Grochowalski, et al, 1998] 
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Here C is a correction coefficient (value 5.2C  was proposed in [Grochowalski, et al,

1998]). As in the previous case, s stands for perimeter of the deck well. Height of the 

water above the bulwark he(s,t) can be found as: 
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Here, hi is height of water surface on the deck, h0 is the height of water exterior to the 

bulwark, and hb is the height of the bulwark. All the co-ordinates are given in a space 

fixed system. 

Velocity of escape for the starboard side is: 
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The velocity of escape through the stern is: 
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Here, b is deck width and hdk is bulwark height, e1 and e2 are Euler’s angles. These 

formulae were validated with model tests, the comparison is shown in fig. 7.16. The 

agreement between the experiment and prediction is good [Grochowalski, et al, 1998]. 

More information on trapped water outflow is available from [Calisal, et al, 2000, Shin, 

2000].

Fig. 7.16 Mass of water escaped form deck [Grochowalski, et al, 1998] 

7.2.4 Influence of Deck in Water
1

Earlier researches on ship behavior with water on deck are reviewed in [Caglayan and 

Storch, 1982]. 

The comprehensive experimental research of capsizing was undertaken in Canada 

[Grochowalski, et al, 1986, 1994, 1998; Grochowalski, 1989, 1990, 1993, 1993a, 1997, 

2000] (see also subchapter 6.5.6 of [Kobylinski and Kastner, 2003]). Here, we briefly 

revisit the major findings on influence of the deck in the water. 

It was found that if the leeward side bulwark becomes submerged and a ship has 

significant lateral motion towards the immersed side, then a significant hydrodynamic 

reaction and corresponding additional heeling moment appear.  

The hydrodynamic force generated by a submerged deck and bulwark prevents the 

bulwark and deck edge from coming out of the water and restrains a ship in the heeled 

position. Her stability reserve is decreased and the ship may be capsized by the next wave 

if she stays in such a position long enough, see fig. 7.17. 

If the weather side bulwark becomes submerged and the ship has lateral motion away 

from the immersed side, then the hydrodynamic reaction is less than in the previous case. 

                                                          
1 Written in co-authorship with Prof. Stefan Grochowalski of Webb Institute. 
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Fig. 7.17 Hydrodynamic reaction on submerged part of the deck [Grochowalski, et al, 1998]  

This reaction has a dynamic nature: it develops only when there is significant velocity of 

water flow relative to the submerged deck. This velocity also has to be directed 

“towards” the deck, otherwise the water would be freed of the deck and the  

hydrodynamic reaction will not develop. Experimental observations show that swaying 

and yawing motions are major contributors to the creation of this force, which is, in fact, 

an addition to conventional hydrostatic, Froude-Krylov and wave diffraction forces.

Grochowalski and Lee [1990a] developed an approximate method of calculation of the 

hydrodynamic reaction created by a deck in water. It was assumed that the reaction has 

inertial and gravitational natures, viscosity was neglected; also it was assumed that the 

bulwark is fully submerged, deformation of the wave profile caused by the presence of a 

ship was ignored. The above assumptions allow us to present additional dynamic pressure 

in the following form:  

RDFKHSdk pppp  (7.83) 

The first term in the equation represents the hydrostatic pressure:  

zgpHS 0  (7.84) 

The second term is pressure caused by the wave: it is assumed that diffraction could be 

ignored in the first expansion, so it is the pressure of an undisturbed wave. Integration of 

this pressure over the hull surface would produce the Froude-Krylov force: 
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Where 0 is the potential of pressures in incident waves. 

The third term expresses the dynamic pressure generated by the motion of the immersed 

part of the deck relative to surrounding water: 
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2
)( RDRD
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vv
vfkp  (7.86) 

The velocity vRD is the normal component of the total velocity of the fluid in the given 

point. Here, we consider the immersed part of the deck as a body moving in inviscid 

fluid, that is why normal relative velocity is considered: 

nvv RRD  (7.87) 

The condition that relative velocity vRD is directed towards the deck is expressed as: 
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Forces of a viscous nature are considered to be small here, so tangent components of the 

pressure are neglected. 

Coefficient kDW are to be defined from the model test [Grochowalski, et al, 1998]. 

Additional hydrodynamic forces and moments caused by deck-in-water effects could be 

found by integration of the pressures pRD over all affected surfaces: 

A

RDRDRDDWDW dAvvvfkF )(
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 (7.89) 

A

RDRDRDDWXDW ydAvvvfkM )(
2

 (7.90) 

Both of the above formulae imply that the domain of integration – area A if instantaneous 

surface of deck in water. Correction coefficient kDW is determined from model tests to 

calibrate the model. Grochowalski [1997] carried out such an experiment in the towing 

tank of the Institute for Marine Dynamics (IMD).  

A sample of the calculation of force and moment caused by deck-in-water effect is 

presented in fig. 7.18. Time histories of ship motions (roll and yaw motions, velocities of 

heave and sway) that are shown there are taken from the above model test. The dashed 

line plotted along with roll motion time history is the result of simulation: it represents 

anticipated rolling without deck-in-water effect. Numbers in circles mark specific 

moments; fig. 7.19 shows simulated position of a ship and wave crest along with 

immersed portion of deck at these moments. Finally, the calculated moment caused by 

deck-in-water effect is shown in fig 7.18 at the same time scale as time histories.  

Fig. 7.18 clearly shows that deck-in-water influence on rolling (difference in dashed and 

solid line at roll time history plot) coincides in time with the development of significant 

hydrodynamic moment on deck calculated with formula (7.90). This can be considered as 

an indirect proof of the adequacy of model deck-in-water effect described in 

[Grochowalski, et al, 1998]. 
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Fig. 7.18 Influence of deck submergence on roll motions. Fragment of time record of free running 

model test #25 and the calculated roll moment generated by submerged part of the deck 

[Grochowalski, 1993, 1993a] 
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Fig. 7.19 Deck submergence in a free-running model test in breaking quartering waves (projection in 

horizontal plane, run no. 25). Time points correspond to those given in fig. 7.18  

[Grochowalski, 1993, 1993a] 
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7.2.5 Model of Ship Motions 

Let us examine the following case: ship in beam seas, fitted with a bulwark and this 

bulwark is periodically submerged. We assume that the ship is equipped with freeing 

ports.

Following Lee and Adee [1994] we consider a system with three nonlinear differential 

equations reflecting swaying, heaving and rolling: 
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 (7.91) 

We consider the terms included in the system (7.68). 

m and Ix are mass and transverse moment of ship inertia without water on deck. 

aij and ij with i=2,3,4 and 

j=2,3,4 are added masses and 

coefficients of wave damping 

of a ship. Elis [1980, 1980a] 

showed that influence of 

submerging of the deck edge 

can be quite significant: the 

difference may be up to ten 

times, see fig. 7.20.  

FYd, FZd, MXd are additional 

damping forces and moments 

caused by deck edge or 

bulwark submergence. The 

following expression for MXd

is available from Sevastianov 

[1977]:

44|)|1(2 bakGMmgM dXd  (7.92) 

kd is a coefficient, taking into account bulwark/deck edge submergence; the appearance is 

shown in fig. 7.21: 

6
/3exp1 dd bk  (7.93) 

Here, b is a coefficient determined by the model test. If the bulwark is present b=8, and if 

the bulwark is absent b=2 [Sevastianov, 1977]. Coefficient a takes into account the 

viscous component of roll damping. Rakhmanin [1995] proposes to consider additional 

damping as:  

 )(;)(2 44 pfaIM dxxdXd  (7.94) 
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added mass 44 for some ship section, Elis [1980, 1980a] 
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p is a measure of deck edge / bulwark submergence ( a is roll amplitude, S is angle of 

static heel, b – angle when bulwark enters water, d –angle when deck enters water) : 

dSa

bSa
p

/)(

/)(
 (7.95) 

Fig. 7.21 Influence of deck edge / bulwark submergence on vortex component of roll damping 

FYF, FZF, MXF are moment and components of the force caused to water outflow. We have 

considered outflow of trapped water on deck including the outflow problem discussed in 

subchapter 7.2.3. We were interested in estimation of the amount of water on deck. 

However, a significant amount of water out-flowing from the deck is capable of creating 

a jet force. 

FYR, FZR, MXR are moment and components of the force of drift resistance. This drift is 

caused by the reaction to the jet force created by water outflow from the deck. 

Rakhmanin [1966a] assumes that:  

M MXF XR  (7.96) 

Analogously, we can assume that: 

ZRZFYRYF FFFF ;  (7.97) 

FZH, MXH are restoring terms for heaving and rolling. Rakhmanin [1966a] proposes to 

take the roll restoring term as the hydrostatic moment of stability (KG1 is vertical position 

of centre of gravity taking into account water on deck): 

),( 1KGGZmgM XH  (7.98) 

FYE, FZE, MXE are wave excitation forces and moment. Garkavy [1979] derived the 

theoretical solution for the Froude-Krylov components using series by powers of two 

small parameters. Lugovsky [1966] originally proposed this method of bi-parametric 

expansion for a wall-sided ship. Lee and Adee [1994] have used the method of 

hydrodynamic singularities for the calculation of these terms within a linear approach. 
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FYW, FZW, MXW are forces and moment caused by either influence water on deck (see 

subchapter 7.2.3) or deck-in-water effect (see subchapter 7.2.4). 

7.2.6 Behavior of Ship with Water on Deck 

The dynamical system (7.91) is quite complex. Numerical integration of the system does 

not pose a problem, but interpretation of the results may be difficult and simplification of 

the model is a necessary step. Garkavy [1979, 1985] analyzed the rolling equation with 

periodical submersion of the 

deck using the equivalent 

linearization method (see 

subchapter 4.2.1). The effect 

of water on deck was not 

taken into account and it 

was shown that periodical 

deck submersion leads to 

decreasing rolling 

amplitudes and to 

simultaneous extension of 

the instability zone, see fig. 

7.22.

Falzarano and Troesch 

[1990], Falzarano, et al [1992] proposed to transform the water on deck into a fixed 

weight. Such a method leads to consideration of ship rolling with negative initial 

stability. Equilibrium at the origin of the coordinate system becomes unstable and stable 

equilibrium is shifted. As a result, we 

have two separatorices: one starts 

from the unstable equilibrium at the 

origin and the other starts from the 

angle of vanishing stability, see fig. 

7.23.

The first separatrix usually is called a 

homoclinic connection (from Greek 

word “homios” – the same). This term 

emphasizes that the separatrix starts 

and ends on the same saddle point, 

associated with unstable equilibrium. 

The second separatrix is usually called 

a heteroclinic connection (from Greek 

word “heteros” – different). The term 

emphasizes that the separatrix starts from one saddle point and ends on different one. 

Both separatorices for the damped 

case are shown in fig. 7.24.

0 1

A

With deck 
submerging 

Without deck 
submerging

GZ

Unstable equilibrium

Stable equilibrium 

Fig. 7.22 Change of response curve and instability zone caused by 

periodical deck edge submersion, [Garkavy, 1985]

Fig. 7.23 Separatorices for negative initial stability 
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Following Falzarano, et al [1992], we 

consider ship behavior in the region of the 

homoclinic separatrix: 

)sin(

2 3

3

2

EE t

a
 (7.99) 

Since the system (7.99) is forced, we need to 

calculate invariant manifolds to determine 

the area of attraction for different stable 

equilibria. The method of calculation of the 

invariant manifold for a heteroclinic 

connection was described in subchapter 

5.3.3. There is no principal difference for 

calculation of the homoclinic invariant 

manifold. The formula for the Melnikov function for the homoclinic connection is 

follows [Falzarano, et al, 1992] : 

3

0
0

3

0
0

3

4
)sin(

2
sech

2
)(

aa
M E  (7.100) 

With: 

;;
2

E
E  (7.101) 

00 ;EE  (7.102) 

 -is a small parameter 1.

Zeros of the Melnikov function correspond to the intersection between stable and 

unstable manifolds. As we have seen from subchapter 5.3, if even one such crossing 

occurs, there will be an infinite number of them. The basin of attraction to stable 

equilibrium experiences erosion and the system shows chaotic response. The critical 

value of excitation amplitude that makes the Melnikov function to cross the zero is as 

follows: 

2
cosh23

4

3

0

a
Cr  (7.103) 

Normally, a ship with negative initial stability has a static hill angle, so she rolls near a 

non-zero stable equilibrium. Erosion of area of attraction also means that a ship is 

capable of sudden changes of stable equilibrium, such a regime of rolling is called erratic 

rocking, two samples of which are shown in fig. 7.25. The behavior of heteroclinic 

invariant manifolds do not differ from the case of positive initial stability, see subchapter 

5.3.

More information on the subject is available from [Ananiev 1989], [Kan 1992a], [Kan 

and Taguchi 1992b, 1993], [Lee and Adee 1994]. Garkavy [1991] observed deterministic 

chaos and sub-harmonic response in model tests.

Fig. 7.24 Separatorices for negative initial 

stability with damping [Falzarano, et al, 1992] 
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There were a number of numerical simulations of ship motions with water on deck as 

well: see, for example [Huang, and Hsiung 1997]; some of these simulations used 

advanced time domain codes: LAMP was applied for study of small fishing vessel 

behavior [Belenky, et al 2002, 2003].

Fig. 7.25 Samples of erratic rocking [Kan and Taguchi, 1992b, 1993] 

7.3 Stability in Breaking Waves 

7.3.1 General 

All the above discussions were based on a harmonic presentation of waves. This 

assumption is derived from the theory of small waves. So far, we did not raise the 

question: what is the influence of the shape of the wave on ship stability? There are 

papers focused on consideration of ship response in nonlinear waves (see, for example, 

[Cardo, et al, 1985], [Trincas, 1986]). Nonlinearity of the wave is expressed as a non-

sinusoidal shape of the wave profile and, first of all, in the absence of symmetry.

Here action of the breaking wave is considered. Blagoveshchensky was one of the first 

who suggested the breaking wave was a reason for capsizing [Nechaev, 1989]. He 

investigated accidents with two drifters in the Caspian Sea during the winter of 1955. 

Both shipwrecks took place not very far from the harbor of Kianly, near the city of 

Krasnovodsk. Two sister ships, “Morlovets” and “Kuuli-Mayak” were small wooden 

ships, length 18 m, breadth 4.4 m, depth 2.56 m and full load displacement 64 metric tons 

with the draught 1.57 m. Both ships were built in 1950. 

“Morlovets” was lost in January 1955. After some time, she was found lying on the sea 

bottom at a depth of 8-9 m, only 1.5 nautical miles from the harbor of Kianly. The drifter, 

“Kuuli-Mayak”, was spotted by a storm while returning from a fishing ground on 

February 23
rd

 1955. Northwest winds reached 9 on Beaufort scale. Waves were about 6 m 

high with a length of 60 m. It is known that high waves break when they reach shallow 

water. One of these waves covered the deck of “Kuuli-Mayak”. The wave was so strong 

that it knocked out the wheelhouse door. Two crewmen were washed out; one crewman 

was washed into the machinery space through the open hatch. The ship capsized and 

floated keel up about two days, after which she was found on the shoreline. The GZ curve 

t

t

a)

b)
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of “Kuuli-Mayak” was normal and met requirements for this type of vessel. Investigators 

believed that a breaking wave was the reason for the capsizing in both cases [Nechaev, 

1989].

M/V Helland-Hansen was capsized by a breaking wave in September 1976 near the 

Norwegian coastline [Dahle and Kjaerland, 1980]. The ship was returning to the harbor 

with empty holds. North wind with force 8 on Beaufort scale had the same direction as 

the waves. Significant wave height was about 3.5 m. There was a sea current in the 

opposite direction to the waves and wind. Norwegian fisherman knew this place for the 

occurrence of large breaking waves. The ship had a speed of about 6 knots, when the 

captain noticed a breaking wave 5-m high approaching from the portside. Then, the wave 

hit the ship. After the impact, the ship was heeled up to 60 degrees within 5-6 seconds. 

Succeeding waves increased the heel up to 80 degrees and the ship was flooded through 

hatches, ventilation holes and wheelhouse windows. The ship sunk after 20 minutes with 

2 crewmen killed, and the remaining 10 crewmen rescued by a helicopter. Again, the 

stability of the Helland-Hansen met all the requirements. 

7.3.2 Geometry and Classification of Breaking Waves 

A breaking wave profile is shown in fig. 7.26. The usual geometric characteristics are 

insufficient to describe this wave. The following geometric characteristics of an 

asymmetric wave of finite height are used to describe the breaking wave [Kjeldsen and 

Myrhaug, 1978]: 

Crest front steepness: 11 /Wf  (7.104) 

Crest rear steepness: 21 /WR  (7.105)  

Vertical asymmetry factor: RfV // 12  (7.106) 

Horizontal asymmetry factor: hWV /1  (7.107) 

Theoretical criteria for breaking waves are summarized in table 7.8 [Kjeldsen and 

Myrhaug, 1978]. 

Fig. 7.26 Geometry of asymmetric wave of finite height 
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Table 7.8 Theoretical breaking wave criteria for gravity water waves [Kjeldsen and Myrhaug, 1978] 

Condition State Symmetry Action of 
wind

Water Criteria Reference

steady un-
steady 

Yes No Yes No Deep Shall
ow 

Geo-
metrical X  X   X X  The angle  at 

the top 
becomes 120 
degree

Stokes
1880

X (X) X (X)  X X  The steepness 

h/  reaches 
limiting value 
0.142

Michell
1983

 X  X  X X X The front face of 
the wave 
becomes
vertical 

-

X X X X  X  X h/H =0.78 McCown 
1981

Cinematic  X  X  X X X The horizontal
particle velocity 
at the surface 
exceeds the 
phase velocity  

-

 X  X X  X X h
c

g

q

c
max

2 2

2
1

q-surface drift 

Banner & 
Phillips 
1974

Dynamic X  X   X X  The download 
acceleration in 
the wave crest 
exceeds 0.5g 

Lonuett-
Higgins
1969

 X  X  X X X The vertical 
upward 
acceleration in 
the wave crest 
exceeds g or        

g
z

p

D

D

t

w 1

 no vertical 
momentum flux 

Smith 1976 

There is a difference between breaking waves generated in shallow and deep waters. 

Breaking waves are similar in their height and length in shallow water conditions 

contrary to deep water, [Nechaev, 1989]. For shallow water, the wave profile changes 

significantly when the wave approaches the shore. Steepness of the wave increases, the 

wave becomes asymmetric and front crest steepness increases faster than rear crest 

steepness, see fig. 7.27. The wave becomes unstable and breaks itself with foam and 

noise.

Fig. 7.28 shows the classification of deep water breaking waves [Kjeldsen and Myrhaug, 

1978], where a detailed study of spilling and plunging breakers can be found. The 

reference also contains recommendations for the generation of these types of wave in a 

towing tank. 
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Fig. 7.27 Scheme of wave transformation in shallow water [Balitskaya, 1965] 

Fig. 7.28 Classification of breaking waves in deep water waves [Kjeldsen and Myrhaug, 1978] 

7.3.3 Impact of Breaking Wave: Experiment and Theory 

A model test by Balitskaya [1965] was one of the first experiments on stability in 

breaking waves; it was carried out in the towing tank of Saint-Petersburg Marine 

Technology University by the initiative of S. N. Blagoveshchensky in the early 1960’s 

(see also subchapter 6.5.5 in [Kobylinski and Kastner 2003]). 

The towing tank was equipped with a floating bottom; see fig. 7.29. The position of this 

floating bottom relative to the level of calm water could be easily changed. The towing 

tank was also equipped with a buoy transducer for wave profile measurement in deep 

water and level transducers for wave profile measurements in shallow water. 
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Fig. 7.29 Scheme of floating bottom for wave transformation [Balitskaya, 1965] 

A schematized pontoon model was used for this experiment. The model was free to drift 

and roll, first under the action of symmetric regular waves in deep water and then under 

the action of breaking waves in shallow water. The model was equipped with pressure 

gauges for measuring impact pressures caused by breaking waves. Roll angles were 

measured by filming. The model’s characteristics are given in table 7.9 and its 

appearance is shown in fig. 7.30. 

Fig. 7.30 Scheme of pontoon model [Balitskaya, 1965] 

Table 7.9 Characteristics of the models for experiment in Saint-Petersburg University of Marine 

Technology  

Model No. Length, m Breadth, m Depth, m Description Year 

49563 1.38 0.288 0.137 Tug, V=1680 m
3
,

P=1700 bhp, scale 1:40 

1960

71621 2.00 0.350 0.195 Pontoon 1962 

70590 2.00 0.250 0.137 Pontoon 1962 

71622 2.00 0.175 0.096 Pontoon 1962 

H

5.4 m 

2.8 m 

Side pressure gauges 

Deck pressure gauges 0.1 m 0.1 m 

0.8 m 

B

D

L

0.4 m 
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The characteristics of the wave in deep water were: period 1.2 s, length 2.2 m, height 0.2 

m. Examples of time histories of model rolling and capsizing under the action of breaking 

waves are presented in fig. 7.31. 

Fig. 7.31 Time history of rolling and capsizing under action of breaking waves. Model No. 70590, 

[Balitskaya, 1965] 

Following Kholodilin [1963], Balitskaya [1965], Kholodilin and Tovstikh [1969], we 

assume that all action of breaking waves on a ship can be expressed as impact:  

 )()()()()( 44 tMtMGZmgMaI XIXEXDxx  (7.108) 

Where MXI(t) is the heeling moment due to a breaking wave impact. We integrate it 

during the time of a single impact from moment t1 until t2. Because time of impact is 

small, the integrals of finite quantities )(,)(,)( tMGZWM XEXD , can be neglected and 

the equation (7.108) can be significantly simplified: 

2

1

2

1

)()( 44

t

t

XI

t

t

xx dttMdtaI
dt

d
 (7.109) 

Assuming that 0)( 1t  we obtain: 

2
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2
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xx
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aI

taI
 (7.110) 

The right hand term can be calculated using model test data, the left-hand-side term is 

kinetic energy. Capsizing occurs when kinetic energy exceeds potential energy: 

2

1

2

1

)()(
)(2

1
2

44

dGZWdttM
aI

t

t

XI

xx

 (7.111) 

A comparison of theoretical and model test results is summarized in fig. 7.32, showing 

satisfactory agreement. Further research of ship behavior in breaking waves in shallow 

water was carried out in the St. Petersburg University of Marine Technology and was 

reflected in [Kholodilin and Mirokhin, 1972]. Experiment with the model of Japanese 

fishing vessel was carried out by Ishida and Takaishi [1990]. 
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Fig. 7.32 Results of model test (Model 71622) and theoretically predicted capsizing boundary (white 

circles denotes surviving and black one denotes capsizing) [Kholodilin, 1963] 

7.3.4 Probabilistic Approach to Capsizing in Breaking Waves 

Ship behavior in deep water breaking waves was studied in the towing tank of the 

National Laboratory for Seakeeping of Fishing Vessels (Kaliningrad Institute of 

Technology, Russia) [Sevastianov, 1984], [Cerka and Batuev, 1985], [IMO, 1984]. 

Deep-water breaking waves were created with a pneumatic wave maker. It generated a 

sequence of waves with a continuously increasing period from 1 to 3 seconds. The 

sequence is generated during one control cycle with duration of 30 seconds. The waves 

with a large period have larger phase velocity. Short-period waves are slower. Long-

period waves pass short period waves and interfere with them. The resulting wave 

becomes too steep and breaks (fig. 7.33). The control program was written to provide 

wave breaking at the location where the model was tested [Cerka and Batuev, 1985]. 

A particular purpose of these model tests was to study the influence of superstructures on 

ship stability in breaking waves. A small stern Russian trawler “Baltika” was chosen for 

these tests. The model scale was 1:6. The ship characteristics are given in table 7.10. 

The model was schematized and had no keel and deckhouses, variants of superstructure 

types are shown in fig. 7.34, while the stability characteristics are given in table 7.11. The 

loading condition for all the models was in a critical state. This means that all the stability 

criteria of the Russian Register of Shipping were satisfied without lack and one criterion 

was satisfied without surplus and lack. GZ curves of these models are shown in fig. 7.35. 
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Fig. 7.33 Breaking wave in the towing tank of National Laboratory of Seakeeping at Kaliningrad 

Institute of Technology, Photo by A .A. Adriashkin [Nechaev, 1989] 

Table 7.10 Characteristics of small trawler “Baltika” 

Length between perpendiculars, m 22 

Waterplane breadth, m 6.8 

Draft, m 2.35 

Block coefficient 0.458 

Total depth, m 3.3 

Windage area, m
2
 87.95 

Windage area centre elevation, m 1.89 

The model was placed in the towing tank in a beam position to waves. Two ropes were 

attached to the bow and stern allowing maintaining the desired position in the towing 

tank. The model was released in a few seconds before the impact of the breaking wave. 

So, it had freedom to drift immediately before the breaking wave impact and then could 

capsize or not. There were 70 runs for every model. The probabilistic nature of this test is 

that the initial phase of the rolling before impact was random. Results of the model tests 

are summarized in fig. 7.36.  

Table 7.11 Stability characteristics of the tested models  

Number 

of variant 

GM/B,

m

GZmax/B,

m
GZmax,

deg
V, deg Weather 

criterion
CR=KGcr/D Critical 

criterion

1 0.110 0.050 30 61 4.285 0.773 GZmax

2 0.110 0.050 30 61 3.091 0.773 GZmax

3 0.070 0.056 67 90 2.779 0.985 GM

4 0.079 0.037 30 84 2.830 0.836 GZmax

5 0.079 0.037 30 84 2.258 0.836 GZmax

6 0.119 0.082 30 72 7.402 0.754 GZmax
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Fig. 7.34 Variants of superstructure type 

Fig. 7.35 GZ curves of the models. Number of curve corresponds to the number of model. 

Observations revealed there were three different types of model behavior. The model 

without structures and bulwark had a significant amount of water on deck, but this water 

moved with the same speed as that of the breaking wave moves in absence of the model. 

The model did not track the wave and did not have a significant heel angle.

The bulwark changed this picture dramatically. It kept some quantity of the water on 

deck and the model practically did not roll and could be capsized by the next wave.
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The model with a superstructure had significant heel due to breaking wave action 

(sometimes up to 45 degrees), but capsizing was very rare. The model with a forecastle 

was turned 20-49 degrees toward the direction of wave proliferation. Side bulbs 

decreased stability in breaking waves. One can see that the influence of superstructure 

may be quite significant for the stability in breaking waves. 

Further development of both models of breaking wave action on a vessel is described in 

[Nechaev, et al 2006]. 

Fig. 7.36 Probability of capsizing with confidence interval 

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

O
b

s
e
rv

e
d

 p
ro

b
a
b

il
it

y
 o

f 
c
a
p

s
iz

in
g

Model Number 



289 

Chapter 8 

Nonlinear Roll Motions in Irregular Seas 

8.1 Fundamentals of Stochastic Processes 

The reader is expected to be familiar with the principal concepts of probability theory 

including stochastic processes. Nevertheless, we will review and emphasize certain 

aspects of theory that is critical for our further considerations of probabilistic models of 

wind, waves, and nonlinear ship motions and capsizing. 

8.1.1 General 

A stochastic process is a random variable changing in time. So, instead of having one 

random variable with an infinite number of possible values, we have an infinite number 

of random variables, each of which corresponds to a moment of time. If we choose one 

realization of each variable, we get one realization of the whole process. Since there are 

an infinite number of realizations for each variable, we have an infinite number of 

realizations for the whole process. The set of all these realizations is usually called the 

“ensemble of realizations”.  

If the time is fixed, we get a “usual” random variable with infinite number of realizations, 

which is called “time section”. Stochastic process may be considered as having “double 

infinity”: in time and in number of realizations (in other terms in “probability space”), see 

fig. 8.1. 

This random variable may represent the wind velocity, wave elevation or roll angle of a 

ship. Despite the different physical nature of these figures, they represent a system with a 

certain inertia; instant changes are impossible since that would mean an infinite 

acceleration and infinite inertia force. Therefore, there are always transitions between 

extremes.  

These transitions represent relationships between the current value and the value in 

another moment. It is evident that this relationship will be weaker with increasing length 

of time. That means that random variables in time sections of stochastic processes are 

dependent in a probabilistic sense: 

2

21
21

,
|

xf

xxf
xxf  (8.1) 
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Here, x1 is a random variable at the section 1tt  and x2 is a random variable at the 

section 2tt , symbol ...f  stands for the probability density function that is frequently 

abbreviated as PDF. Having in mind that, if we have a joint probability density 21, xxf

for two random variables x1 and x2, we can always derive the PDF for each of them: 

2211 , dxxxfxf  (8.2) 

We can continue and introduce the joint PDF for three and even more time sections. 

Theoretically, a complete probabilistic description of a stochastic process is provided by 

the joint distribution of all time sections, but we will not need a joint PDF of more than 

two sections. 

Fig. 8.1 Stochastic process: realizations and time sections 

8.1.2 Moments of Stochastic Process. Autocorrelation 

Analogously to the case of a random variable, a stochastic process has moments: mean 

value, variance and so on. (These moments are also called “moments of distribution”; the 

difference between them and spectral moment will be demonstrated later.) 

A stochastic process is a set of random variables each of which correspond to a certain 

moment of time. If we calculate the mean value for each variable, we receive a set of 

mean values: each one would correspond to the moment of time. In other words, the 

mean value of a stochastic process is a function of time. Analogously, the variance and 

higher moments of distribution are also functions of time. 
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The same consideration can be applied to PDF. It can be considered as a function of two 

variables: the current ordinate of the process and time. So, we will be using the following 

expression : 

 ),())(( txftxf  (8.3) 

The mean value and variance of a stochastic process can be expressed correspondingly: 

dxtxftxtm ),()()(  (8.4) 

dxtxftmtxtV ),()()()(
2

 (8.5) 

Since every time section is a random variable, we can rewrite the joint distribution of any 

two of these variables as a function of four arguments:

),,,())(),(( 212121 ttxxftxtxf  (8.6) 

The simplest measures of dependence between two random variables are correlation 

moment and correlation coefficient. However, if they equal zero, the variables may be 

still dependent (dependence may be revealed with the correlation moments of higher 

orders). Vice versa: if the variables are independent, the correlation moment and 

coefficient will surely equal zero. If two random variables are time sections of a 

stochastic process, their correlation moment is a function of two arguments: 

212121221121 ),,,())())(((),( dxdxttxxftmxtmxttC  (8.7) 

This function has a special name: it is called the “Autocorrelation function”. It expresses 

the fact that there are transitions between extremes. It is the simplest indicator of 

“memory” of a stochastic process; it shows how strong the current state’s influence is on 

the future state. If we fix time t1, autocorrelation becomes a function of one argument t2; a 

sample of such an autocorrelation function is shown in fig. 8.2. 

Fig. 8.2 Typical appearance of autocorrelation function 

C(t1=0,t2=t) 

t
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8.1.3 Stationary and Non-stationary Processes 

Stochastic processes, for which probabilistic characteristics do not depend on time, are 

called “stationary”. Processes of this type are especially important for practical 

applications in Naval Architecture: descriptions of irregular waves and gusty wind use an 

assumption that the processes are stationary.  

Stationary processes possess the following qualities, which make their application 

simpler: 

Their probability distribution does not depend on time. Any section may be used to 

evaluate PDF: 

)())(())((
21

xftxftxf  (8.8) 

Moments of the distribution do not depend on time either: 

dxxxfdxtxftxdxtxftxm )(),()(),()(
2211

 (8.9) 

dxxfmx

dxtxfmtxdxtxfmtxV

)(

),()(),()(

2

2

2

21

2

1

 (8.10) 

Autocorrelation function does not depend on choice of the moments t1 and t2. It 

depends only on the difference between these two moments of time 12 tt :

212122121 ),())(()(),( dxdxxxfmxmxCttC  (8.11) 

Further, we will be dealing with stationary processes only. At the same time, non-

stationary processes are also used in practical applications, when a character of changing 

external conditions can be identified. For example, Dimentberg [1980] considered the 

problem of stochastic oscillation of an aircraft’s front wheel during the take-off. 

Stochastic oscillations are caused by irregularities of runway surface; the process is non-

stationary, because the speed of the aircraft is increasing.  

Another possible application of a non-stationary stochastic process can be found for a 

ship turning in irregular seas. Changing of course causes ship motion processes to be 

non-stationary.

8.1.4 Ergodicity 

Some stationary processes possess an ergodic quality or ergodicity. It makes work 

simpler than with the general stationary process. Ergodicity means that we can evaluate 

any probabilistic characteristics using only one realization only if it is long enough. 

However there is no formal definition what is “long enough”. 
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How are these characteristics defined for one realization? In this case, we have one value 

at each moment of time, so we just average these figures; the mean value and variance 

can be defined as: 

T

T
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dtmtx
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dttx
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)(
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 (8.12) 

Formulae (8.12) and (8.13) give only a formal definition for the mean value and variance, 

which is why we carry out integration to infinite limits. In practice, our data are always a 

finite number of values obtained within a range from zero to T. We can still use these 

formulae, but the results obtained are only estimates of the true values. :: 
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The autocorrelation function is formally defined as: 

T

T
dtmtxmtx
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An estimate of the autocorrelation function 

T

dtmtxmtx
T

C
0

))()()((
1

)(  (8.15) 

Evaluation of the estimate of the autocorrelation function using one realization only 

encounters certain difficulties as amount of available statistical data decreases with 

increase of the argument . As a result, the initial part of the estimate of autocorrelation 

function has better accuracy than the rest of the estimate. However, this may be enough 

for practical purposes, because this initial part contains the most important information 

about “memory” or “inertia” of the process. Therefore, a numerical method is needed to 

find out where the calculations have to stop or where the estimate of autocorrelation 

function has to be cut-off. The alternative is to mitigate the error by statistical weighting 

[Belenky 2004].

More details will follow in subchapter 8.6.1, where ergodicity of nonlinear ship roll is 

addressed.

8.1.5 Spectrum and Autocorrelation Function  

Spectrum represents distribution of energy over frequencies. To obtain the spectrum, we 

presented a stochastic process in a form of a series with trigonometric functions, known 

as a Fourier series: 
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 (8.16) 

Coefficients ai and bi are related with amplitude ci and phase i with the following evident 

formulae: 

i

i
iiiiiiiii

b

a
baccbca arctan;;cos;sin 22  (8.17) 

As it is well known, coefficients ai and bi can be calculated with the Fourier transform 

formulae: 
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 (8.18) 

Provided that: 

T

i
i  (8.19) 

Our presentation of stochastic processes in a form Fourier series (8.16) also is called the 

“inverse Fourier transform” in contrast with the direct Fourier transform (8.18), when we 

calculate coefficients with a given realization of the process.

As can be seen from (8.18), only one realization was used to obtain coefficients of the 

Fourier series. It means that the process x(t) is assumed to be ergodic. Therefore, the 

inverse Fourier transform also yields an ergodic process. 

However, it does not mean that the spectrum could be used only for ergodic processes. 

There is a general relationship between the autocorrelation function and spectrum  (more 

precisely – spectral density) defined by direct and inverse cosine Fourier transforms: 

diCS
0

)exp()(
2

1
)(  (8.20) 

diSC
0

)exp()()(  (8.21) 

Here: 1i .

Formula (8.21) reveals a relationship between variance and spectrum. Variance has a 

clear and simple relationship with the autocorrelation function: 

)0(CV  (8.22) 

Therefore, the variance can be found as an area under the spectrum directly from (8.21); 

it is also called the spectral moment of zero order: 

dSCV
0

)()0(  (8.23) 
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Its physical meaning (for mechanical stochastic processes) is averaged total energy (see 

also subchapter 9.6 [Kobylinski and Kastner 2003]). Some probabilistic qualities of 

spectral representation will be revisited in the subchapter 8.2.3 while some numerical 

aspects are considered in the subchapter 8.3.6. 

8.1.6 Envelope of Stochastic Process 

If a stochastic process is stationary and has a Gaussian distribution, it can be presented 

(following [Sveshnikov, 1968] in this subchapter) as: 

)(cos)()( ttAtx  (8.24) 

Amplitude A(t) and phase (t) are stochastic processes. Why is the presentation (8.24) 

simpler than (8.16), if we express one stochastic process via two?  

First, quite often we are interested in the peak value of the process and the presentation 

(8.24) expresses process of extreme values explicitly. Secondly, trigonometric form 

(8.24) makes it easy to use as an excitation for the method of multiple scales and other 

asymptotic methods. We have considered this method for regular roll in subchapter 4.2.4 

and will apply it for irregular nonlinear roll in subchapter 8.3.5. 

The method is called an “envelope”, because the amplitude process “envelopes” the 

original stochastic process, see fig. 8.3. 

Fig. 8.3 Envelope of stochastic process 

Further we assume that x(t) has a zero average and normal distribution. The last 

assumption imposes certain limits on the application of the envelope method for 

nonlinear irregular roll (since it may not be Gaussian, as we will see in subchapter 8.4). 

However, this limitation does not really affect our presentation of irregular waves. 

Let us first consider distribution of both amplitude and phase processes. To facilitate it, 

we introduce another process: 

)(sin)()( ttAty  (8.25) 

We can consider the processes x(t) and y(t) as projections of a stochastic vector on 

perpendicular axes. We consider y(t) as a stationary Gaussian stochastic process, which is 

independent of x(t) at the  same instance of time. (They are still dependent if we consider 

different moments of time.) We also assume that both processes have an identical auto-

correlation function. 

Let us consider x(t) and y(t) as co-ordinates and find a probability that a point will be 

within a small ring stretched from radius a to a+da:

time

Envelope
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Since we assumed that the processes are Gaussian and independent: 
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Here,
yx

VVV  is a variance: since we assumed that both processes have the same 

auto-correlation functions, indeed their variances are the same. Let us rewrite (8.26) in 

polar co-ordinates ),(a  which would correspond to amplitude A(t) and phase (t) in 

envelope presentation (8.24): 
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The integrand in the formula (8.28) has a meaning of joint probability function: 
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There is no variable  in the right hand side of (8.29), which means that amplitude A(t)

does not depend on phase (t). It also means that phase (t) has a uniform distribution 

from 0 to 2 :
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Then, the probability density of amplitudes can be expressed as follows: 
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Formula (8.31) is known as a Rayleigh distribution. So any stationary Gaussian process 

can be presented in the envelope form with the uniformly distributed phase and amplitude 

having a Raleigh distribution. 

The above presentation yields even more exact analytical expressions for probabilistic 

figures of amplitude and phase. The derivations are rather bulky, so we provide final 

formulae. Since amplitude and phase actually are stochastic processes themselves, auto-

correlation functions of amplitudes and phase contain important information: 

2
112)( 222 pppVtC

A
KE  (8.32) 

The formula for the auto-correlation of )(cos t  is more convenient and concise than that 

one for the phase itself: 
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Here V and C(t) are the variance and autocorrelation function of the original process x(t),

E and K are elliptic integrals of the first and the second kind: 
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Parameter p is expressed through the autocorrelation coefficient and the joint correlation 

coefficient between x(t) and y(t):

)()(1 222 trtcp  (8.35) 

Where: c(t) is the auto-correlation coefficient r(t) is joint correlation coefficient: 
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As we mentioned above, the joint correlation function of processes x(t) and y(t) equals 

zero if we consider ordinates of both processes at the same time (since they are 

independent). However, it is non-zero if we take the processes at different time moments. 

It can be derived using a spectral presentation of both processes. Here we included only 

the final result: 

0
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 (8.37) 

The joint distributions of derivatives of amplitude and phase are other important 

analytical results available for envelope presentation:  
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Here, m1 and m2 are non-dimensional spectral moments, expressed via derivatives of 

autocorrelation c(t) and joint correlation r(t) functions: 
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Any combination of one- or two-dimensional distributions of the amplitude, phase and 

their derivatives can be deduced from (8.38). Further, we will need particularly, the 

distribution of derivative of phase and amplitude separately:  
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If the spectrum has a clearly pronounced maximum and is narrow, (definition of a narrow 

spectrum, see subchapter 9.7 of [Kobylinski and Kastner 2003]) the envelope 

presentation (8.25) can be further simplified. Consider the difference between squares of 

1 and 2 in the details. Having in mind that 1 does not depend on frequency and: 
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The above difference can be presented as: 
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Again, in terms of moments, m1 is the first initial spectral moment, 2

2m is the second 

initial moment, and value 2

1

2

2

2 mm  is the second central moment. It corresponds to 

the variance for a random value, if the spectrum is considered analogous to a distribution 

density.

Now, if the spectrum is narrow, the second central spectral moment has to be small, 

analogously as a random value with a small variance has a narrow probability density 

function. This means: 

2
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2 m  (8.44) 

Looking at the distribution of envelope derivative (8.42) we see that it is, in fact, a 

Gaussian law: 
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With a zero average and variance that is equal to 2V . This distribution becomes more 

pointed with decreasing  and hence a narrowing of the spectrum. This means, large 

deviations of A  from zero have a small probability. In other words, amplitude A is a 

slowly changing value. 

Consider the distribution of the derivative of the phase, rewriting (8.42): 
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It is evident from (8.46) that the phase derivative distribution has a peak when  is close 

to 1 and this peak becomes sharper with decreasing . Then is makes sense to present a 

phase as:

 )()()( 1 ttttmt a  (8.47) 

In fact, we consider now not the phase itself, but its deviation from one of pure sinusoidal 

motion. It is clear that: 

3222

)(f  (8.48) 

Finally, in the case of a narrow spectrum or narrow banded process, we can present it as: 

 ))(cos()()( tttAtx a  (8.49) 

Where amplitude A(t) is a slowly changing value and a is the spectrum averaged 

frequency.

8.2 Probabilistic Models of Wind and Waves 

8.2.1 Gusty Wind 

We define wind gust as a short time variation of wind velocity (see also subchapter 9.2 of 

the [Kobylinski and Kastner 2003]). Therefore, it is convenient to present instantaneous 

horizontal wind velocity as a sum of averaged wind velocity and gust fluctuation: 

 )()( tuutu GA  (8.50) 

Mean wind velocity is to be obtained over several hours. We could assume that the wind 

velocity is a stationary process and the weather does not experience significant changes. 

Since there is spectrum available ([Davenport, 1964], also subchapter 9.2 of [Kobylinski 

and Kastner 2003]), we can present the fluctuating component of the wind velocity in the 

form of a Fourier series: 

n

i

iiiG tctu
1

)cos()(  (8.51) 

Here, amplitudes ci are defined from the spectrum exactly in the same way it was 

described in subchapter 8.1.5. Phases i are random numbers, which have uniform 

distribution from 0 to 2  A sample of a time history is shown in fig 8.4. 

The application of formula (8.51) implies that wind velocities have a Gaussian 

distribution. Actually, this hypothesis works well, see [Lugovsky, 1976].
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Fig. 8.4 Sample of time history of gusty wind 

The next question to be addressed is probabilistic qualities of gust velocity extremes. It is 

convenient to introduce a non-dimensional measure of the maximum wind velocity in a 

gust that is called a “gust coefficient”: 
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u

u
C max  (8.52) 

Here, uGmax is maximal wind gust velocity. The spectrum of wind gust velocities is not 

narrow-banded as the spectrum for waves (see subchapter 9.7 of [Kobylinski and Kastner 

2003], where the concept of spectral breadth parameter  is described). Lugovsky [1976] 

reported the value of the parameter 89.0  based on observation of wind on the Caspian 

Sea. A little wider spectrum was evaluated above the Antarctic with the value of about 

0.9.

Since the spectrum of gust velocities is wide, the gust coefficient has Rice distribution: 
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With: CVCz /)1(  and spectral breadth 40

2

240 / mmmmm  (mn is spectral 

moment of order n), VC is the variance of the gust coefficient. 

Lugovsky [1976] offers two values for the variance of the gust coefficient: 

Caspian Sea: 0167.0CV

Antarctica:  0206.0CV

The mean value of the gust coefficient can be derived from equation (8.53) [Lugovsky, 

1976]:

CC Vm 55.01  (8.54) 

Yamagata [1959] recommended a mean value of the gust coefficient of 1.23. 

 uA

 t

 uG(t)
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8.2.2 Squalls
1

We have used the above spectral presentation of the stochastic process of horizontal 

components of wind velocity. Such a presentation takes into account wind gusts that are 

described as the fluctuating component of wind velocity. However, this model does not 

take into account squalls. Zinkovsky-Gorbatenko [1965] proposed that wind gusts and 

squalls are to be distinguished by 

duration. Wind gusts are considered as 

stationary stochastic fluctuations. 

Squalls are defined as single, rare wind 

speed increases with increasing wind 

velocity growing to some maximum 

value and with a long velocity decrease 

of random duration, see fig. 8.5. 

Such rare (or even single) non-stationary events could be the main reason of ship 

capsizing or dangerous heeling. However, these squalls cannot be reflected in the wind 

speed spectrum, even if they occur during wind speed recording. This can be explained 

by the fact that the time duration of the squall is too small in comparison with the whole 

recording period and so the statistical characteristics of these additional non-stationary 

singular events will equal zero. 

This can easily be demonstrated by the following consideration. We take two stochastic 

wind velocity processes: the first is the stationary presented by formula (8.50): 

 )()( tuutu GA

The second process is the same as the previous one in all moments of time excluding the 

time range from t1 to t2, where the squall wind velocity uS (t) is added, see fig. 8.6. 

 )()()(1 tutuutu SGA  (8.55) 

Fig. 8.6 Sample of time history of gusty wind with squall

The limit equals zero because the integral dttu

t

t

S

2

1

)(  is a finite quantity and T . A 

similar result can be obtained for the variance: 

Vtumtumtum G )()]([)( 22
 (8.56) 

                                                          
1 Unpublished paper of N. B. Sevastianov was used in this subchapter.  

Fig. 8.5 Scheme of squall 
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It means that a single squall with the finite value of the integral in time range from t1 to t2

cannot be detected by spectral analysis. Taking into account that a single squall may be 

quite dangerous for the ship, we should supplement ship stability assessment under the 

action of a stationary stochastic process (irregular waves plus gusty wind) with a 

probability assessment of capsizing due to action of single non-stationary squalls. 

8.2.3 Spectral Model of Irregular Waves 

As we mentioned in the subchapter 8.1.5, Fourier series or inverse Fourier transform can 

be used to model a process with a given spectrum and the result is stationary and ergodic. 

Let us repeat formula (8.16) here: 
n

i

iiiW tct
1

)cos()(  (8.58) 

The wave elevation is a sum of many random components (since phase  is a random 

number, components are random numbers too). Usually most of the contribution comes 

from the frequencies around the peak of the spectrum and usually there are enough of 

them, so we can say that we consider the sum of a large number of approximately equal 

random components. The Central Limit Theorem establishes that a sum of equally 

contributing components tends to a normal distribution with an increase of the number of 

components; the distribution of indicial components does not affect the result. Therefore, 

the distribution of a resulting wave elevation is Gaussian. Since sea waves are known to 

be Gaussian, this is considered an adequate model as far as distribution is concerned. 

Application of the inverse Fourier transform, however, is not limited by normally 

distributed processes.  

8.2.4 Method of Envelope 

We have seen in subchapter 8.1.6 that a stochastic process can be presented with a single 

trigonometric function, if both amplitude and phase are considered as random quantities. 

If the assumption of a narrow spectrum is acceptable, the presentation is significantly 

simplified. Its amplitude is a slowly changing figure and it is possible to define a 

dominant frequency. However, phase shift stays random: see formula (8.49): 

 ))(cos()()( tttAt aW  (8.59) 

The spectrum of seaways can be considered narrow and presented as an envelope 

[Francescutto, 1991]. This assumption seems to be adequate also because a dynamical 

system has a limited band of response and thus works as a filter. 

The most common way to introduce spectrum into the envelope presentation is by 

application of a linear filter, described by the following differential equation: 
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)(2 tWaWaWW  (8.60) 

Here,  is a “damping” parameter, defining the 

sharpness of the spectrum. W(t) is a stochastic 

process that does not have memory at all. It is 

called a “white noise” or Wiener process. Its 

current ordinate does not depend on any other, so 

its autocorrelation function is a delta-function. It 

is usually modelled with a uniform spectrum in 

the given frequency range ];[ 21 , which is also 

shown in fig. 8.7:
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The spectrum of the response (which is wave elevation) is evident: 
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The parameters of the above spectrum (8.62): SW,  and a have to be fitted with some of 

the known spectra. ITTC and JONSWAP spectra fitting is available from [Francescutto 

and Nabergoj, 1990], see table 8.1.

Table 8.1 Envelope Presentation Parameters 

Spectrum White noise 

spectral level 

Frequency Damping 

factor

ITTC 0.35 1.01 0.50 

JONSWAP (sharpness magnification factor 7) 1.3 1.16 0.14 

Stratonovich [1963] proposed an alternative form that is more convenient to present 

excitation while applying perturbation methods: 

ttAttAt aSaCW sin)(cos)()(  (8.63) 

Two amplitudes A C(t) and A S(t) are slowly varying independent Gaussian stochastic 

processes that are defined by the following differential equations: 
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 (8.64) 

More details are available from Stratonovich [1963]. 

Fig. 8.7 Spectrum of a “white noise”  

or Wiener process 

2
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8.2.5 Autoregression Model
1

The Fourier series and method of envelope are not the only ways irregular waves may be 

presented. A different method, the auto-regression model, should be mentioned. This 

model is convenient for simulation; its parameters can be easily identified from 

measurement, which makes it important for application in intelligent on-board safety 

systems. Such systems use simulation to deliver safety judgment, see [Nechaev and 

Degtyarev, 2000], [Nechaev, et al 2001]. 

The main idea of the autoregression model is presenting a stochastic process as a series of 

consequent ordinates, each of which depends on the previous one. This dependence is 

meant to be dying with the increasing of the distance in time. The auto-regression model 

therefore directly simulates the most important quality of a stochastic process, which is 

“memory”. 

We already discussed the Wiener process, where the current value does not depend on the 

time history. If the current value depends on the previous one only, the process is called a 

Markov process: 

 )()()( 1 iii tWtHt  (8.65) 

Here, (t) is the value of the stochastic process; H is a coefficient, which takes into 

account the time history and W(t) is realization of the white noise at time moment t. We 

will return to the Markov process later in subchapter 8.6.4. 

The auto-regression model takes into account dependence between a time section further 

back in time: 

1

)()()(
j

ijiji tWtHt  (8.66) 

Coefficients Hj  are parameters of autoregression, they show the dependence between the 

value at the present moment of time and time history. White noise or Weiner process, 

W(t) is assumed to be a zero mean value. 

The events that have taken place long ago cannot influence values now, so we can reduce 

the number of terms of series (8.65) up to a certain quantity N:
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Formula (8.67) has a very clear physical meaning: the term 
N

j
jij

tH
1

)(  expresses the 

inertial character of the sea surface while white noise introduces some stochastic 

contribution and simulates reaction for wind and other disturbances.  

Coefficients Hj can be determined using the autocorrelation function [Gurgenidze and 

Trapeznikov, 1988]. For a sample of the application of this model, see [Belenky, et al,

1995, 1998]. 

                                                          
1 Written in co-authorship with Prof. Alexander B. Degtyarev and Dr. Alexander V. Boukhanovsky of 

Institute for High Performance Computing and Information Systems (Russia). 
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One of the most important advantages of the autoregression model is its ability to 

represent 3-D waves – stochastic surface, keeping both time and spatial autocorrelation 

functions. Moreover, this stochastic field may be both non-stationary and non-

homogeneous. More information is available from [Boukhanovsky, et al, 1998a, 2001]. 

8.2.6 Non-Canonical Presentation
1

A non-canonical presentation of a stochastic process was proposed by Cherentsky [1968]. 

The idea of the method is to substitute a stochastic process with a finite nonlinear 

combination of deterministic functions of random arguments and time. The number of 

terms of the non-canonical model has to be chosen to equalize certain statistical 

characteristics of the model and the process. This is the main difference between non-

canonical and canonical models of stochastic processes. Canonical models usually use an 

infinite number of deterministic functions: presentation with Fourier series is one of the 

typical examples of canonical models. 

Stationary 3-D sea waves can be presented in the following form [Belenky, et al, 1997]: 

ttt sincos)(
21

 (8.68) 

Random variables 1 and 2 have Gaussian distributions and their mean values are equal 

to zero. Their variances are determined from the spectrum: 

dudvvuSV ),(
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 (8.69) 

Here, S (u,v) is a 2D spectrum of waves and u and v are wave numbers in both directions. 

Random frequency,  depends on two wave numbers u and v, which are defined from 

their joint distribution f(u,v):
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Formula (8.68) completely describes a stochastic process (up to the moments of the 

second order –moments higher than the variance cannot be reproduced) along with its 

derivative and primitive. This is especially important for simulation of dynamical systems 

that are described by differential equations.  

Even moments of distribution of non-canonical presentation (8.68)-can be expressed as: 

VktM kk

W ;!)!1()(  (8.71) 

This shows that the process presented by (8.68) has a Gaussian distribution. 

Unfortunately, it does not hold for joint distributions of several time sections. This 

imposes certain limits on using this presentation. More details are available from 

[Degtyarev, 1994; Belenky, et al, 1998].

However, this is the only model available that allows simulating time section without 

calculating time history. This is a very important advantage for the study of non-ergodic 

systems, where we cannot limit ourselves with only one realization but have to consider 

the whole ensemble.  

                                                          
1 Written in co-authorship with Prof. Alexander B. Degtyarev and Dr. Alexander V. Boukhanovsky of 

Institute for High Performance Computing and Information Systems (Russia). 
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8.3 Irregular Roll in Beam Seas 

This subchapter is focused on how a ship, being a dynamical system, transforms irregular 

waves into roll motion. Most of our attention is paid to nonlinearity and how does it 

affect probabilistic characteristics of roll. 

8.3.1 Linear System. Weiner–Khinchin Theorem 

We start from the simplest linear differential equation of roll motion. Irregular waves are 

presented in the from of a Fourier series: 

N

i

iiEi t
1

2 sin2  (8.72) 

Here, Ei is the amplitude of the i-th component of a Fourier presentation of wave 

excitation. If we consider Froude-Krylov forces only (see subchapter 3.5), it can be 

expressed as: 

Awi
i

iAiiiAwiiAmiEi
g

k
2

2222 )()()(  (8.73) 

Here, Ami is effective angle of wave slope (reduced to take into account finite size of a 

ship), Awi is angle of wave slope for i-th component, ( i) is a coefficient for reduction 

of roll excitation caused by a finite sized ship in comparison with the wave estimated for 

the given frequency i [Blagoveshchensky, 1962], it equals 1 for the long waves; ki is the 

wave number for the same frequency and Awi is amplitude of the i-th component 

calculated from the spectrum.  

Phase shift i is a random variable distributed uniformly from 0 to 2

For the solution of the differential equation (8.72), the fact that excitation is a stochastic 

process does not play any role. Since the equation is linear, its solution consists of a 

general solution of the homogeneous equation that represents the transition process and a 

particular solution of the heterogeneous equation, which represents the steady state 

solution after the transition would die out: 

N

i

iiiAiAA

t

A ttet
1

00 sin)sin()(  (8.74) 

Amplitude A0 and phase A are arbitrary constants and depend on initial conditions. 

Frequency of the free damped oscillations A0 is related with eigenvalues. All these 

figures are deterministic and do not differ from the case for regular beam waves (see 

Chapter 4). 

Since equation (8.72) is linear, its particular solution can be searched in the same form 

that excitation is presented. That is why we use Fourier series as a particular solution of 

the heterogeneous equation.

The excitation itself is a sum of sine functions with individual amplitude, frequency and 

phase. We demonstrate briefly, how a linear system “treats” such excitation. Assuming 

the solution in a form Fourier series we find both derivatives: 



Nonlinear Rolling Motions in Irregular Seas 307 
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Let us substitute (8.75)-(8.77) into the equation (8.72): 
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 (8.78) 

We regroup (8.78): 
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 (8.79) 

If we equalize trigonometric functions with the same frequency, the equation (8.79) 

becomes a system of N equations, each of which contains the single frequency: 
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 (8.80) 

We see now that the linear equation “deals” with each component separately, so we can 

rewrite the regular solution for the case of irregular waves: 

2222222

4
arctan;

4 i

i

i

ii

Ei
Ai  (8.81) 

It is very clear from the solution (8.81) that the response of a linear system is proportional 

to excitation: this fact is well known from classical seakeeping analysis. This allows 

presenting the spectrum of the response using RAO (Response Amplitude Operator): 
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)()()(
2
SS  (8.82) 

With: 

22222

22

4

)(
)(

g

 (8.83) 

Formula (8.82) is also known as the Wiener-Khinchin theorem and it works for linear 

systems only! This method was first applied to ship roll by St. Denis and Pierson [1953]. 

8.3.2 Correlation of Irregular Roll 

The Wiener-Khinchin theorem provides the relationship between spectra of excitation 

and response; both these processes are dependent. Let us look at their correlation.

Irregular waves are known to be an ergodic stochastic process. As it is clearly seen from 

the Wiener-Khinchin theorem (8.82), the linear system response is a result of action of a 

linear operator. It is known that linear transformation does not break ergodicity; 

therefore, both linear irregular roll and its excitation are also ergodic stochastic processes. 

This allows working in a time domain with one realization and the use of a Fourier series 

to present it. 

The correlation moment is defined as: 

ddfmmC EEEE ),())((),(  (8.84) 

Taking into account that the mean value of wave elevation and, correspondingly, wave 

excitation is always zero and both waves and roll are ergodic processes, the correlation 

moment can be expressed as follows: 
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),(  (8.85) 

Using a Fourier presentation for both excitation and roll processes: 

dttt

dttt
T

C

T N

i

N

j

jjiiiEiAi

T N

j

jjEi

N

i

iiiAiE

0 1 1

00

0 1

0

1

0

sinsin

sinsin
1

),(

 (8.86) 

Having in mind that: 
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Formula (8.86) can be presented as: 
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 (8.87) 

To perform the integration, we have to consider two cases: for equal and non-equal 

indexes i and j. If the indexes are not equal, both integrals in (8.87) are mean values of 

the cosine function. Since both realizations are long: 
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If the indexes are equal, one of the integrals has a non-zero value: 
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Therefore, after multiplication and integration of both Fourier series, only terms with the 

same indexes have a non-zero value. This quality of trigonometric functions is known as 

orthogonality. Finally: 
N

i

iEiAiEC
1

cos
2

1
),(  (8.90) 

The correlation moment depends on both amplitude and phase angle between excitation 

and roll. Actually, formula (8.90) can be applied to any two stochastic processes that can 

be presented by a Fourier series. Let us check the correlation between all the processes 

we are dealing with including roll velocity (8.76) and acceleration (8.77). 

Since the phase angle between the sine and cosine functions equals 
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0
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This means that roll velocity is not correlated with roll. Moreover, roll velocity does not 

depend on roll angle. This is also true for nonlinear response [Gerasimov, 1979, Belenky, 

1993a]. Independence of roll angle and velocity means that if a ship has a certain value of 

roll angle, it does not have an affect on the probability to have any value for roll velocity 

at this moment.  

The same is true for correlation between roll velocity and roll acceleration: 
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At the same time, there is a strong negative correlation between roll angle and 

acceleration, the correlation moment equals the variance of roll velocity taken with the 

opposite sign:
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Both roll velocity and roll acceleration are correlated with excitation: 
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Despite pairs of processes, roll angle – roll velocity and roll velocity – roll acceleration 

are not correlated, all these processes are dependent on and correlated with excitation. 

Gerasimov [1979] considered excitation as a combination of two parts. One part is 

correlated with roll angle and the other one with roll velocity; both parts are not 

correlated with each other: 
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It is easy to see (taking into account orthogonality of trigonometric functions): 
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 (8.97) 
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Analogously:
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It is also easy to see that both parts are not correlated: 
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Division of the excitation into two parts has physical meaning, we already discussed it in 

subchapter 7.1.5. Excitation of any periodic process plays two roles: synchronizing 

(forcing the dynamical to follow with the excitation frequency) and active (compensation 

energy dissipation by the damping term). The first part of excitation that is correlated 

with roll angle is responsible for synchronizing and the other one is active. This 

consideration can be extended for nonlinear roll as well, if we assume ergodicity 

[Gerasimov, 1979].  

8.3.3 Statistical Linearization

As we mentioned in Chapter 4, there is no general analytical solution for a nonlinear 

differential equation describing roll motion of a ship. Introducing stochastic excitation 

makes the problem more complex, since we no longer can take advantage of periodic 

qualities of excitation. We cannot use the previously described linearization technique 

since it is related with periodic excitation, and we need to know the amplitude of 

response in order to complete the procedure, see subchapter 4.2. 

However, there is another linearization technique available for stochastic excitation. The 

idea of linearization remains the same: we substitute the original nonlinear system with 

the linear equivalent. The equivalence could be built using different approaches: the 

simplest one is to require that linearization error be minimized  [Vassilopoulos, 1971]. 

More information on statistical linearization in general is available from a comprehensive 

book by Roberts and Spanos [2003]. 

So let us consider the nonlinear roll equation:  

)()(2 2 tff E  (8.100) 



Chapter 8 312 

Here, fE(t) is stochastic excitation. It is usually assumed as a stationary ergodic stochastic 

process with a Gaussian distribution. Following our previous examples, we assume the 

restoring moment to be approximated with cubic parabola: 

3

3)( af  (8.101) 

So, we will be looking to substitute the nonlinear system: 

)(2 3

31 tfcc E  (8.102) 

Where 3

2

3

2

1 ; acc  with the linear system: 

 )(2 tfc EL  (8.103) 

We try to find such a value for cL that would make the mean square of an error of such a 

substitute minimal: 

min3

31 LcccV  (8.104) 

This can be achieved with: 
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Consider the  variance operator first, assuming average of the roll angle equals zero, then 

the variance is just a mean value of the square of the value: 
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Here, 4M  is the fourth moment of the distribution: 

dfdfmM )()( 444  (8.107) 

Following [Vassilopoulos, 1971], we assume that roll has a Gaussian distribution, such as 

the excitation (in subchapter 8.6.2 we consider nonlinear roll distribution issues). 

Gaussian distribution provides the following relationship between variance and the fourth 

moment: 

24 3 VM  (8.108) 

Substitution of (8.78) and (8.76) into (8.75) leads to the following equation: 

0622 2

31 VcVcVcL  (8.109) 

With the final expression for the unknown coefficient of the linear system: 

VcccL 31 3  (8.110) 
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8.3.4 Energy-Statistical Linearization 

The statistical linearization technique described in the previous subchapter sometimes 

also is referred to as equivalent statistical linearization. Originally, this technique was 

developed for applications in electronics, where dynamical systems are characterized 

with relatively small inertia.  

Gerasimov [1979] proposed an alternative method of statistical linearization  based on 

equivalence of statistical characteristics of work/energy balance. To emphasize the 

energy conservation based approach, this method was called “energy-statistical 

linearization”. We consider it briefly in this subchapter. 

We already considered the energy balance of roll equation as a background of the 

weather criterion in subchapter 7.1.5. Here, we repeat these derivations using a different 

technique. Also following [Gerasimov, 1979] we consider nonlinear damping as well as 

the nonlinear restoring moment: 

 )()()( tfr E  (8.111) 

Here, )(r  is the nonlinear roll damping and f(  is the nonlinear restoring moment. We 

multiply this equation first by roll angle, then by roll velocity and finally apply averaging 

over time (it means that we assume roll is an ergodic process): 
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If the mean value of roll equals zero (we can always subtract it from both sides of the roll 

equation if it is non-zero), we obtain a system of equations with correlation moments: 
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 (8.113) 

Let us consider each term of (8.79) in detail [Gerasimov, 1979]. 

As we have seen from the equation (8.63), the correlation moment between roll angle and 

acceleration is equal to the variance of roll velocity taken with the opposite sign. This 

value also can be interpreted as the average of change of kinetic energy (compare with 

equation 7.33):
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The correlation moment between nonlinear damping and roll angle equals zero. 

Nonlinear damping can be considered as a deterministic function of a random argument – 

roll velocity. Naturally, such a deterministic function is also a stochastic process, but it 

cannot be dependent, if its argument is independent:  

0),(rC  (8.115) 

The correlation moment between the restoring moment and roll angle is proportional to 

the mean value of potential energy. 
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The correlation moment between roll acceleration and roll velocity equals zero. 

The correlation moment between nonlinear damping and roll velocity expresses the 

average value of work of the damping moment. 

The correlation moment between the restoring moment and roll velocity is zero (see 

analogous consideration above). Finally:
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As we have seen in subchapter 8.3.2, the excitation can be presented as a sum of two 

parts, one of each is correlated with roll angle and the other – with roll velocity: 
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Now, we have two equations for the energy/work balance as averaged values. The first 

equation describes the balance of kinetic and potential energy with synchronizing action 

of the excitation. The second equation shows that a certain portion of excitation power is 

used for the work of damping forces. This system is very similar to the energy balance 

equation for a linear system. The difference is that instead of change of energy or work, 

we have corresponding correlation moments, which can be treated as averaged values of 

these figures.   

The system (8.117) expresses the law of energy conservation and its structure is the same 

for linear and nonlinear systems. Gerasimov [1979] used it for energy statistical 

linearization. He introduced a concept of energy equivalent cycle for this purpose. It is 

free oscillations of a non-damped, non-forced linear system with the frequency equal to 

the average frequency of the original nonlinear system: 

 02

a  (8.118) 

Here, a is the average frequency of irregular nonlinear roll described by differential 

equation (8.111). The definition of averaged frequency of a stochastic process is based on 

the upcrossing theory, which is discussed in Chapter 9. For a Gaussian stochastic process 

it is expressed as: 

V

V
a  (8.119) 

Initial conditions that are necessary to define a cycle of the system (8.118) are defined as: 

0;
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V
 (8.120) 

The resulting cycle is described as: 

taAE cos  (8.121) 
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The amplitude AE is defined through the initial conditions (8.120). Gerasimov [1979] 

called it “energy equivalent amplitude”: 
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0  (8.122) 

If we calculate formally the average value of kinetic energy of this cycle or variance of its 

roll velocity: 
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Therefore, the energy equivalent cycle formally has the same variance of roll velocity and 

the frequency is equal to the averaged frequency of nonlinear irregular roll. 

The idea of energy-statistical linearization is to find a linear system with the same energy 

equivalent cycle as the nonlinear one. Consider the linear system: 

 )(2 2 tELL  (8.124) 

All statistical characteristics of energies for a linear system are known in analytical form 

(using formulae (8.98) and (8.99) as well): 
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Substitution of these formulae into the energy balance equation (8.117) yields: 
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 (8.126) 

The variance of roll is related with the variance of roll velocities through averaged 

frequency (8.89). The pair, V  and a, completely defines the statistics of energy balance 

of a linear system.  

To complete energy-statistical linearization, we have to find a relationship between 

nonlinear functions )(r  and f( ) and characteristics of the energy equivalent cycle: 

energy equivalent amplitude and average frequency (or variance of roll velocities and 

average frequency). This was done with the assumption of a Gaussian distribution of roll 

angles and velocities. (We will consider the distribution of nonlinear roll as a separate 
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problem in subchapter 8.6.2.) Since the derivations are lengthy, we provide the results 

only. Details can be found in [Gerasimov, 1973, 1974, 1979]:  
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Function )( A  is the backbone line that we have considered in subchapter 4.1. The 

only difference is that it has to be calculated with energy equivalent amplitude as an 

argument.  

Formulae (8.127) and (8.128) use characteristics of the energy equivalent cycle a and 

AE that can be calculated only when variances of linearized roll angle and velocities are 

known. These variances can be calculated only when coefficients of the linearized

equation are known, so an iteration technique is required.

When calculations are completed, we obtain a linear system, for which the energy 

balance has the same average as the one of the nonlinear system. 

8.3.5 Method of Multiple Scales 

As we mentioned above, perturbation methods can be successfully applied for the case of 

irregular roll if excitation is presented with the envelope. Here, we demonstrate this 

technique, following Rajan and Davis [1988]. They considered the Duffing equation, 

which we used as the simplest model of nonlinear roll: 

tttta aESaEC sin)(cos)(2 3
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2  (8.129) 

Here, amplitudes EC(t) and ES(t) are independent Gaussian stochastic processes which 

vary slowly in comparison with both roll excitation and roll response, see subchapter 

8.2.4. These amplitudes are defined by two linear differential equations (8.64), rewritten 

to filter roll excitation instead of wave elevation: 
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Here, WC(t) and WS(t) are two independent Gaussian Wiener processes, their spectral 

level adjusted to accommodate differences between wave elevation and roll excitation. 

We consider the frequency domain near the main resonance; detuning parameter is 

introduced slightly differently in comparison with our previous consideration in 

subchapter 4.2.4:

a  (8.131) 
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Following established procedure:

30300 ;;; aaESESECEC  (8.132) 

We look for the solution as a function of time in different scales. Here, we limit ourselves 

with the first expansion only: 

 ),(),( 101100 TTTT  (8.133) 

T0, and T1 are different time scales. They correspond to different orders of expansion: 

tTtT 10 ;  (8.134) 

Here, these scales have a direct physical meaning: “fast” time T0 has the scale of changes 

of roll excitation and response processes, “slow” time T1 corresponds to the pace of slow 

varying of the amplitude process. Considering both time scales as independent variables, 

we express their derivatives (following the procedure from subchapter 4.2.4 almost 

exactly) as: 

...2;... 01

2

0
2

2

10 DDD
dt

d
DD

dt

d
 (8.135) 

With 
i

i
T

D  is a partial derivative operator.

Using expression (8.131), taking into account that amplitudes are slowly varying function 

of time and finally substituting formulae (8.134), the stochastic excitation can be 

presented as: 
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We substitute formulae (8.132), (8.133), (8.135) and (8.136) into original equation 

(8.129) and transform it to the system according to powers of book keeping parameter 
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Comparing equations (8.137) and (8.138) with analogous equations (4.68) and (4.69), it 

is necessary to note the slight difference between them. It is caused by differences in the 

way the detuning parameter was introduced.  

Considering the solution of the first expansion, the following form is expected: 

CCTiTA )exp()( 010  (8.139) 

Substitution of (8.139) into the equation of the second expansion (8.138) and presenting 

all trigonometric functions in exponential form allows extracting the secular term:  
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The secular term appears as the coefficient at )exp( 0Ti . Following the procedure 

described in subchapter 4.2.4, we set it to zero:
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Expression (8.141) is an ordinary differential equation relative to slowly varying 

amplitude of roll motion. We are looking for the solution in the following form: 
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Substitution of the expected solution into (8.141) allows separation of the real and 

imaginary parts. We obtain the following system of differential equations: 
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System (8.143) contains slowly varying excitation amplitudes ES0 and EC0, which can 

be defined from the system (8.130). Let us add these definitions to (8.143) and consider a 

system of four equations (all the terms in these definitions are of the same order, so we 

can simply multiply by the bookkeeping parameter ):
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Here: CCSS WWWW 00 ; , and 
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Since we are working with stochastic figures, our goal here is to calculate the variance. 

To get it we need to rewrite equations (8.144), so they will be in the form of squared 

terms of the searched quantities and then we shall average them.

We multiply the first equation of (8.144) by x and the second one by z; then we consider 

their sum: 

22

0011
2

1
zxxzzzDxxD ESEC  (8.146) 

Let us introduce new variables: 

00

22 ;)(
2

1
ESEC xzPzxY  (8.147) 

With the new variables, equation (8.146) has the following appearance: 

YPYD
2

1

2

1
1  (8.148) 

Equation (8.148) contains values of the second order. Now, we multiply the first equation 

of (8.144) by 0ES , the second one by 0EC , the third one by –x and the fourth one by 

z. Taking into account (8.147), their sum can be expressed as: 

11
22

1
RQPFPD e  (8.149) 

Here, new variables are: 

00100

2

0

2

0 ;;)(
2

1
SCESECESEC xSzWRzxQF  (8.150) 

The third equation can be derived by the following multiplication and summation: the 

first equation of (8.144) has to be multiplied by 0EC , the second one by 0ES , the third 

one by z and the fourth one by x:

21
22

RQPQD
e

 (8.151) 

Here: 

002 CS xWzWR  (8.152) 

Now, instead of the system of four equations (8.144), we have a system of three 

equations, with all of them in the form of the second order of our original variables: 
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21

11

1

22

22

1

2

1

RQPQD

RQPFPD

YPYD

e

e  (8.153) 

The next step is to average the system (8.153) over a period corresponding to the modal 

frequency of excitation a. Quadratic variables of the system (8.153) yield mean square 

of slowly varied response.

The input process of white noise has a zero average. It is not correlated with components 

of response amplitude x and y, so averaging R1 and R2 produces zero: 

0][;0][
21

RmRm  (8.154) 

All other terms produce a non-zero average: 

aa
QQmPPm ][;][  (8.155) 

Y and F are squared values of slowly varied amplitudes of the response and excitation 

respectively. Being averaged over a period, they produce estimates for the corresponding 

variances: 

E
VFmVYm ][;][  (8.156) 

The value e contains a quadratic response, see equation (8.145), using notation (8.147): 

Yae 30
4

3
 (8.157) 

Therefore, this term also has to be averaged: 

Vam e 30
4

3
][  (8.158) 

Averaged system (8.153) is expressed as: 

aaea

aeaEa
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QmPVPD
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1

2
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1

1

1

1

 (8.159) 

System (8.159) is the stochastic analogue of the system (4.75). The difference is that 

variables are the mean square of the response and filter equations are included. The 

system (8.159) actually can be used to track the transition process, but here we are 
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interested in the stationary (steady state in deterministic terms) solution. So, all the 

derivatives are set to zero and the system of differential equations (8.159) is converted to 

the following system of algebraic equations: 

0
2

][

0][
2

1

02
2

1

aae

aeaE

a

QPm

QmPV

VP

 (8.160) 

The system (8.158) can be resolved relative to V  : 

222 )2(])[(42

)2(

e

E

m

V
V  (8.161) 

Taking into account (8.131) and assuming 1 , the value m[ e] can be presented as:  

Vam ae 3
4

3
)(][  (8.162) 

It is assumed that the averaged frequency of excitation is close to resonance: the 

following approximation is introduced [Rajan and Davies, 1988], 

[Francescutto, 1992, 1998]: 

aa 222  (8.163) 

The above approximation leads to the following: 

22

3

22 1

2

3

2

1
][ xaae Vam  (8.164) 

Here (compare with (4.79)): 

VaVx 3

22

2

3
)(  (8.165) 

Finally, (8.161) can be presented as: 

22222 )2()(2

)2(

V

V
V

xa

E  (8.166) 

It is very clear that in the deterministic case )0(  this formula (8.166) coincides with 

(4.80) having in mind that for the sinusoidal oscillation, the variance formally is equal to 

half of the square amplitude: 2/2AV .

Formula (8.166) describes the reaction of the system (8.129) on a narrow band excitation 

in the vicinity of the resonance area. However, we have seen that a nonlinear system is 

capable for sub- and super-harmonic response to sinusoidal excitation (subchapter 4.6). A 
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similar response can be found for the case of narrow banded excitation as well. High-

order resonance solutions for the system (8.129) are available from [Davies and Rajan, 

1988].

For sub-harmonic response 3a , the detuning parameter is set to satisfy: 

3a  (8.167) 

The remaining coefficients are presented exactly as in the case of main resonance 

(8.132), with the exception of excitation amplitude: 

303; aa  (8.168) 

The solution is presented in the form (8.133), time is scaled in accordance with (8.134), 

and partial derivatives are expressed in the form (8.135). The equations, rewritten in 

accordance with the degree of bookkeeping parameter, are slightly different from (8.137) 

and (8.138): 

01010

2

0

2

0

0 sin)(cos)(: TTTTD aESEC  (8.169) 

3

03000101
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1

2

0

1 222: aDDDD  (8.170) 

A solution of the first expansion is searched for in the following form: 

CCTiTHTiTA a )exp()()exp()( 01010  (8.171) 

The response consists of two components: the first one describes oscillations with the 

natural frequency and the second one with the excitation frequency (compare with 

formula (4.225) from subchapter 4.6.3). Amplitudes of both responses are slow varying 

stochastic processes. Since the oscillations are far from the main resonance region, the 

second component is considered linear.

In accordance with conventional multiple scales method, the elements of the solution 

(8.171) can be found from the condition of elimination of the secular term, which appears 

with the frequency  in the equation (8.170): 

0
3

exp33622 1

2

30

2

30301 TiAHaAAaAHHaAiADi  (8.172) 

The amplitude of sub-harmonic response is expected to be in the following form: 

11
3

exp)(
2

1
)( TiizxTA  (8.173) 

Amplitudes of the second component of the solution (8.171) are defined in the same 

manner as excitation amplitude was defined in the above case of main resonance. Since it 

is linear, it is presented with its sine and cosine components by filtering of white noise 

through the following differential equations: 

)(
22

)(
22

11

11

TWHHD

TWHHD

SSS

CCC

 (8.174) 
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Further derivations do not make so much a difference as with the main resonance case. 

Equivalent detuning parameter e is defined as: 

2222

30 8
8

3
sce HHzxa  (8.175) 

The next step is to switch to a squared response equation (8.172) along with (8.174) and 

then averaging it to get variance estimates. Averaging of the equivalent detuning 

parameter includes using the following approximation: 

3
2

3

2

3

aa  (8.176) 

and:
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3

1
][ 2

3

Vm x
a

e  (8.177) 

Here:

Lx VVaV 3

22

2

3
)(  (8.178) 

Here, V L is the variance estimate of the linear roll response with frequency a, defined 

by averaging its amplitude: 

22

2

1
scL HHmV  (8.179) 

The final sub-harmonic solution for the equation (8.129) [Davies and Rajan, 1988] is: 

22
2

23

22

3

)23()(38

)23(9

V

VVa
V

xa

L
 (8.180) 

Formula (8.180) does not give an explicit expression for the roll variance; it is, actually, a 

quadratic equation relative to it. In the limiting case of deterministic excitation when 

0 , we get the deterministic solution we derived in subchapter 4.6.3, again taking into 

account the relationship between amplitude and variance 2/2AV .

Completing our consideration of the envelope method, we put here the most general 

result for nonlinear roll developed by Francescutto [1991, 1991a, 1992, 1998], 

Francescutto and Nabergoj [1990]. 

The following equation was considered in the above references: 

)()2( 3

3

2

31 ta m  (8.181) 

This equation has an advanced model of roll damping that includes the influence of roll 

angle. A cubic presentation of the GZ curve allows consideration of both small and large 

freeboard ships (only the initial part, however, is included in the latter case).  
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The following implicit expression for the roll variance estimate was derived for the case 

of main resonance excitation: 

22
2

3

22 212
2

3

21
eqeqa

eq

E Va
V

V  (8.182) 

Here, eq is the equivalent damping coefficient:  

3

2

1 3
4

1
)( VVeq  (8.183) 

Considering application of the envelope presentation in conjunction with the multiple 

scale method, we were able to derive formulae for variance estimates. These estimates 

include certain nonlinear phenomena: sub-harmonic response, for example. Moreover, 

the form of equations (8.166), (8.180) and (8.182) allow multiple responses for the same 

averaged wave frequency, which, as we have seen for the deterministic nonlinear roll, 

may be an indication of possible bifurcations.  

8.3.6 Monte-Carlo Method 

Monte-Carlo method was named after the city (and principality) of Monte-Carlo. Famous 

for its casinos, early probability laws were discovered there, while observing outcomes of 

gambling, in particular, dice. Dice were the earliest random generator. Method Monte-

Carlo is actually a kind of stochastic simulation that always uses a random generator of a 

certain kind; this explains the name of the method. 

Monte-Carlo method application for irregular nonlinear roll usually consists of two parts: 

generation of irregular waves and a numerical solution of the roll equation. Since a 

numerical solution of ordinary differential equations (see subchapter 4.2.5) does not 

imply any limitation of type of terms in the roll equation, the Monte-Carlo method is the 

most general way to treat nonlinear irregular roll. Results, however, depend strongly on 

adequacy of presentation of stochastic excitation. 

Conventional application of Monte-Carlo method uses a Fourier presentation for 

simulation of irregular seas. As we have seen while considering different ways of 

presentation of stochastic processes, any of these models requires a random number as an 

input. For Fourier presentation, phase of component plays a role of input random number; 

see formula (8.58) repeated here again: 

N

i

iiiW tct
1

)cos()(

Phase i is considered to be a random variable with uniform distribution from 0 to 2 . It 

has to be calculated with a random generator, the piece of software, which nowadays is 

included into all math packages and standard libraries of subroutines supplied with 

compilers for all major programming languages. These types of generators, however, do 

not provide a really random number. Given exactly the same input data, any computer 

software always reproduces the same outcome. So, it is more correct to call them 

generators of pseudo-random numbers. 
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The algorithms for generation of pseudo random numbers usually involve the remainder 

of division of some number that can be user-supplied, or taken from the system timer. 

More information on the generation of pseudo-random numbers is available from a 

classical monograph [Knuth, 1997]. The majority of available pseudo-random generators 

returns a variable with a uniform distribution from 0 to 1. In order to get the required 

range, the result has to be multiplied by 2 .

A sample outcome of one such generator is 

presented in fig. 8.8 in the form of a 

histogram. 

Next, a set of frequencies has to be chosen. 

So, we have to determine frequency band 

and number of components. There are 

several factors affecting the choice. First, a 

minimal time step, which still provides 

meaningful statistical information, is related 

with the width of frequency band:

12

1

N

t  (8.184) 

This value is called Nyquist interval and this relationship is a part of the sampling 

[Bendat and Piersol, 1986] and Kotelnikov theorems [Korn and Korn, 1968]. If the time 

step of simulation is less than defined by the formula (8.129), the result of the simulation 

may not be statistically representative.  

Another important factor is frequency spacing. It is known from simulation practice that 

if equal frequency spacing is used, time history reconstructed with (8.58) nearly repeats 

itself. This effect is the most evident on an autocorrelation function plot, see fig. 8.9 (a). 

The peaks of autocorrelation function show strong dependence between different 

instances of time that normally should not be related that closely; this constitutes “self-

repeating effect”.

The conventional technique to mitigate this “self-repeating effect” is to use unequal 

spacing for frequency set. However, it does not completely eliminate the error, just 

spreading it over the time, see fig. 8.9 (b). Both autocorrelation functions in fig. 8.9 were 

calculated with cosine Fourier transform (8.21) with the frequency set considered: with 

equal and unequal spacing for 8.9 (a) and 8.9 (b), respectively. 

It is shown in [Belenky 2004] that time domain integration (8.15) delivers almost 

identical results, but the effect is combined with statistical error, unavoidable for time 

domain simulations. It is not clear, if this error is acceptable for practical calculations and 

what effect it may have on the results of the simulations  

It is shown in [Belenky 2005] that the reason for “self-repeating effect” is accumulation 

of numerical errors as both the inverse Fourier transform (8.58) and cosine Fourier 

transform (8.21) are essentially numerical integration procedures.

0 2 4 

0.4

2

1/2

p

Fig. 8.8 Distribution of pseudo-random 

values –output of random generator 
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Fig. 8.9 Autocorrelation function calculated with cosine Fourier transform for the stochastic process 

presented with Fourier series (a) equal frequency spacing (b) unequal frequency spacing 

A time period between two peaks corresponds to frequency step; it provides the time 

while we can consider (8.58) as a representation of stochastic process. This time duration 

has to be taken into account for correct choice of frequency set. 

Physical considerations are also important for this choice. It is probably worthy to limit 

the highest frequency with the wave equal to half of ship breadth. Waves of higher 

frequency hardly create any heeling moment. An analogous approach has to be used 

when the lowest frequency is being chosen. In other words, frequency band has to cover 

the range of dynamic ship response. 

Component amplitude ci is calculated in accordance with the following formula:  

5.0

5.0

)(2
i

i

dSci  (8.185) 

Where S ( )  is spectral density. 

With the integral calculated by 

substitution of segments of the 

function with rectangles, this 

formula converts into 

Sci 2 . This procedure is 

illustrated in fig. 8.10. 

Calculation of amplitudes completes the definition of input for stochastic process of 

irregular waves. Wave elevations then have to be calculated using formula (8.58) for 

every step of simulation. However, one set of random phases provides us with only one 

realisation of irregular waves. Simulation with another realization of waves requires 

generation of another set of random phases (with each set containing N values). We 

would need as many of these sets for as many realizations of waves are required. 

i

S

Fig. 8.10 Procedure of calculation of component 

amplitude 

C( )

T=2 / T=2  /

C( )

a)

b)
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8.3.7 Non-Canonical Presentation and Monte-Carlo Method
1

We considered non-canonical presentation of a stochastic process in subchapter 8.2.5. As 

we mentioned, this presentation is known for it ability to simulate time section of the 

process. Therefore, the simulation procedure has certain specific features that we will 

discuss here. 

First, we have to determine input random numbers. Formula (8.68) contains three 

independent random variables: 

ttt sincos)( 21

These variables are “amplitudes” 1 and 2 with a Gaussian distribution and  with the 

distribution density equal to the normalized spectrum.  

The average value of both 1 and 2 has to be zero. Their variance is equal to the 

variance of waves. How do we create a normally distributed variable with the given mean 

and variance? We use commercially available software packages, which contain 

functions to generate normally distributed random variables. However, if such a 

generator is not available, it is very easy to create one. The central limit theorem states 

that for an infinite sum of random variables, each of which has an equal contribution, the 

distribution tends to be Gaussian. The theorem works regardless of the distribution of 

each individual component.  

Actually, it is sufficient to sum up six independent random variables, which are supplied 

by the pseudo-random generator and have a uniform distribution. Frequently, this number 

is increased to 12, just to be on the safe side and because such a sum results in a variance 

equal to one. As it can be seen, this is the variance of a random variable with uniform 

distribution from 0 to 1 (having in mind that the mean value equals 0.5): 

1

0

2

2

12

1

2

1
)()()( dxxdxxfmxxV x  (8.186) 

Since variance of a sum of independent components equals the sum of the variances, the 

resulting variance of a random variable with a Gaussian distribution equals 1: 
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i xmymxVyV  (8.187) 

This is convenient for further simulations. Its average value has to be subtracted from the 

result, in order to get the required distribution. 

A simple algorithm is also available for generation of random “frequency”  As we 

mentioned above, its distribution is identical to a normalized spectrum (spectrum divided 

by the variance): 

V

S
f

)(
)(  (8.188) 

                                                          
1 Written in co-authorship with Prof. Alexander B. Degtyarev and Dr. Alexander V. Boukhanovsky of 

Institute for High Performance Computing and Information Systems (Russia). 
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We introduce two scales: for frequencies 
Kii ,1

 and probabilities 0: 1,1
pp

Mjj  and 

1Mp . Say we need N values for  We calculate the number of expected occurrences 

of the value i:

5.0

5.0

...1:)(
i

i

NidfNni  (8.189) 

Now, we run the generator of pseudo-random numbers. It produces the values i, with 

uniform distribution in the range from 0 to 1. First, we transform the range: 

 ]1;0[:)( 11 jKjx  (8.190) 

Then, we build a simple filter: it passes through the current value of xj only if their 

quantity is in a range ]5.0;5.0[ ii  (provided ]5.0;5.0[ iijx

does not exceed ni). As it is exceeded, no more x-values in the range are passed through. 

The procedure stops when the total number of the values passed through reaches N.

Now we have completed our simulation of the excitation. The last step is rather simple: 

for each realization of wave elevation, we have a nonlinear roll equation: 

tt
g

f sincos)(2 21

2
2  (8.191) 

This equation is solved with any approximate analytical method described in subchapter 

4.2.

There is a problem associated with the fold bifurcation. There are two stable solutions at 

the same frequency. Which one should we take? There is no single answer yet. However, 

it is intuitively clear that if we need a upper estimate of roll variance, we would rather 

take high amplitude. We will return to this problem during our discussion of ergodic 

qualities of nonlinear roll.  

8.3.8 Parametric Resonance in Irregular Beam Seas 

We conclude our consideration of roll in irregular beam seas with the method of 

calculating parametric roll developed by Boroday and Morenshildt [1986], (available also 

from [Boroday, et al, 1989]). 

We have considered parametric resonance in subchapter 6.2. Changes of the GZ curve in 

following seas were meant to be a possible physical reason for parametric excitation. We 

also mentioned that coupling with pitch and heave is another source of the parametric 

resonance. The last one may exist in beam seas as well if above-the-waterline geometry 

makes significant changes to the GZ curve.

To generate parametric oscillation, natural frequency of heaving should be about twice of 

the natural frequency of roll.  

We use the approximate formulae for natural periods of heaving and rolling [Boroday, et

al, 1989]: 
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GM

B
TdTz

8.0
;4.2  (8.192) 

It is not difficult to express the condition of parametric resonance: 

GMdB 6  (8.193) 

The other condition to be satisfied is the 

substantial change of the GZ curve with 

the draft to provide a significant value 

of amplitude of parametric excitation, 

which can be expressed through the 

derivative of KM on draft d.

We introduce the concept of 

“equivalent” wave: it has parametric 

resonance frequency 2  and its 

amplitude is defined by the energy that 

is contained in the frequency band of 

parametric excitation, see fig. 8.11. 

The amplitude of equivalent wave re as well as the amplitude of parametric roll ap can be 

obtained by numerical solution of the following system of nonlinear algebraic equations: 
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 (8.194) 

Here: Vwe variance of equivalent wave; sw( ) wave spectrum density; wz heaving RAO; 

pm is mean frequency of equivalent waveband, (see fig. 8.11).

The next step is the calculation of the RAO from wave height to roll parametric response: 
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 (8.195) 

That includes the RAO from wave height to parametric excitation: 
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 (8.196) 

Fig. 8.11 An equivalent wave concept for beam seas 

2

S
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As we have already mentioned in subchapter 6.2.2, parametric oscillation in a damped 

system can be generated if the excitation exceeds the threshold. The following formula is 

available from [Boroday, et al, 1989]: 

)()(
8

2
2

pmwpmwp
s  (8.197) 

If the inequality (8.197) is satisfied, the spectrum of parametric roll response can be 

calculated: 

)()()(
2

wwpp
ss  (8.198) 

This spectrum further has to be added to the spectrum of non-parametric roll response 

forming a picture shown in fig. 8.12.  

The result of such an addition rather has to be understood as a pseudo-spectrum of roll 

motion because it shows the distribution of energy by the excitation frequencies. At the 

same time the real spectrum should represent energy distribution by frequencies of 

oscillations.

The pseudo-spectrum can be only used for calculation of variance but not for comparison 

with spectrums obtained from simulations or model tests. Boroday and Morenshildt 

[1986] recommend showing parametric roll response on half of the frequency in order to 

get the real spectrum eligible for comparison, see fig. 8.13.  

For further development on parametric roll in beam seas, see [Ikeda, et al, 2005], [Munif, 

et al, 2006].

Fig. 8.12 Pseudo-spectrum of roll response with 

parametric component 

Fig. 8.13 True spectrum of ship roll response 

with contribution of parametric component (The 

last is shown by dashed line.) 

 s  s ( )
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8.4 Roll in Irregular Longitudinal Seas 

8.4.1 Probabilistic Model of Irregular Longitudinal Seas 

The coordinate system we are going to use was introduced in subchapter 6.4.2 and shown 

in fig. 6.13. It is the conventional combination of immovable and semi-movable systems: 

a semi-movable system experiences translating motion with average heading speed vs.

Wave forces acting on a ship in following and quartering seas are dependent on the 

position of the ship in relation to the wave crest, (see subchapter 6.4). Therefore, we need 

to include wave position into the model of irregular seas. The rest is the same: irregular 

waves are presented as a Fourier series, having amplitudes defined from the spectrum and 

initial phases being random numbers with uniform distribution from 0 to 2 :

n

i

ieiiWiW tkrt
1

)sincos(cos),,(  (8.199) 

Here, ei and ki are encounter frequency and wave number corresponding to true 

frequency i of i-th component respectively. More details are available in subchapter 

10.14 of [Kobylinski and Kastner 2003]. 

8.4.2 Surging in Irregular Seas 

As is well known, surging motion could be important for stability in quartering and 

following seas because the ship spends more time in the vicinity of the wave crest where 

stability is decreased. Here, we use the surging model (6.81) with small modifications 

expressing irregularity of waves:

 ),()()()( 11 GwGsGsG tFvTvRam  (8.200) 

Here: )( GsvR  is resistance of a ship in irregular seas. )( GsvT  is propeller thrust. 

),( Gw tF  is wave excitation force.  

Following [Umeda, et al, 1995], we retain only the Froude–Krylov component of the 

wave excitation force. Its derivation does not meet any difficulties: direct integration of 

wave pressures along the hull surface [Belenky, 2000b]:
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Here, bH(x,z) is hull breadth at abscissa x and depth z, S(x) – is area of submersed section 

at abscissa x.

8.4.3 Changing Stability in Longitudinal Irregular Seas 

The next problem to be addressed is how to take into account GZ curve changes in 

irregular seas. There are several approaches available. Boroday [1967] found an 

analytical solution for probabilistic characteristics of the restoring moment and its work 

in irregular seas. Then, he used the energy balance method, see [Boroday, 1968], 

[Boroday and Netsvetaev, 1969]. 

Another approach is based on the effective wave concept originally proposed by Grim 

[1961], fig. 8.14. The idea is that an irregular wave 

should be substituted by a regular one with the 

length equal to the length of a ship and its crest or 

trough situated at the centre of gravity. The 

effective wave concept was used by Umeda, et al

[1990, 1993] for calculating probability of ship 

capsizing due to pure loss of stability in quartering 

seas. A comparison of the application of effective 

wave concept with direct stability calculations has 

validated such an approach. 

This effective wave is unmovable, its crest is always amidships, but its random amplitude 

is set to have the same effect on stability as that of the original irregular profile:  

x
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tht effeff

2
cos)()(  (8.205) 

The random amplitude of the effective wave heff (t) is presented as a Fourier series in the 

same way we used for waves: 
n
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Amplitudes hi are to be found with a transfer function that was derived to minimize the 

difference between the effective wave and the original profile of an irregular wave along 

the ship’s waterplane: 
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 (8.207) 

As it can be clearly seen from formula (8.206), surging is included into phase of effective 

wave amplitude. This is the way to take into account surging influence on stability in 

following and quartering seas. Now we can express changing of the GZ curve in 

quartering seas in a very simple way: 

heff

Lpp

Fig. 8.14 A concept of effective wave 

[Grim, 1961] 
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sGeffwGw vLthGZGZtGZ ,),,(,)(),,(  (8.208) 

Here, sGeffw vLthGZ ,),,(,  is changing of the GZ curve due to heading in 

quartering or following seas. It does not depend on course directly: course influence is 

already included in effective wave height – formulae (8.206) and (8.207). It is assumed 

also that positive values of heff(t) correspond to wave crest and negative ones to wave 

trough.

Alternatively, the GZ curve can be evaluated at every time instance using instantaneous 

waterline. This approach is implemented in LAMP, FREDYN and other time simulation 

codes.

Once the GZ curve is known, we can write the roll equation as:

)(),,(2

22

t
GM

tGZ
GM

EG  (8.209) 

This equation can be solved by any method considered for roll in irregular beam seas. We 

will be using this model for estimation of capsizing probability in following seas in 

Chapter 9.  

8.4.4 Parametric Resonance in Irregular Longitudinal Seas
1

We have seen from our previous consideration (subchapter 6.2) that significant time 

should pass for parametric oscillation to be induced. In addition, it is quite frequency 

sensitive. Therefore, it seems that parametric excitation is unlikely to meet in irregular 

seas, where instantaneous wave characteristics are changing all the time. 

Nevertheless, parametric resonance in irregular seas is not that rare. Phomenko [1967] 

observed this phenomenon during full scale trials Nechaev [1972] observed parametric 

excitation during semi-full scale model tests in natural waves in the Kursches gulf 

(Southeast Baltic Sea). Catastrophic parametric resonance in head seas caused damage 

and loss of cargo on a post-Panamax containership during her voyage in the Pacific 

[France, et al, 2003]. 

The post-Panamax C11 class containership was on route from Kaoshing (Taiwan) to 

Seattle and encountered a storm (wind 11 on Beaufort scale, sea state 9) for about 12 

hours duration. The ship experienced parametric roll being in head seas. Roll amplitudes 

(according to the crew) reached 35-40 degrees, pitch amplitude was described as 

extremely high, based upon frequent overspeed trips of the main engine and significant 

shaft vibrations. Yaw amplitude reached 20 degrees making steering almost impossible. 

Because of extreme roll motion, one third of the 1300 containers on deck were lost. 

Investigation of the accident included extensive weather modeling. It was shown that 

wind speed reached 29.5 m/s and significant wave height was around 13.4 m with a peak 

period of 15.4 seconds. The natural roll period of the ship was estimated to be 25.7 s, 

which is close to twice the peak period.  

                                                          
1 Written in co-authorship with Prof. Alexander B. Degtyarev and Dr. Alexander V. Boukhanovsky of 

Institute for High Performance Computing and Information Systems (Russia). 
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Results of weather modeling were used in a series of model tests carried out in a 

seakeeping basin of MARIN. Parametric roll was successfully reproduced during these 

tests on both regular and irregular (long and short crested) waves. Experimental results 

confirmed observations of the crew: 33 degrees roll amplitude was recorded during runs 

on short crested irregular seas (significant wave height 12.63 m, peak period 14.65 s in 

full scale) with the calm water speed 11 knots. Model tests also had shown significant 

dependence of the likelihood parametric resonance on heading speed: it has to fall below 

a certain threshold for parametric roll to occur. 

Model testing was supplemented with numerical simulations using codes FREDYN and 

LAMP. Both programs are nonlinear, time domain simulation software developed by 

MARIN [Hooft, 1987] and SAIC [Lin and Salvesen, 1998] correspondingly. FREDYN 

simulations reproduced parametric roll in the model test conditions for both regular and 

irregular seas with some underestimation of parametric roll amplitude. 

LAMP simulations have shown good agreement with experiments when roll damping 

was tuned with results of a decoy test. The simulations have shown the importance of roll 

damping for correct prediction of parametric roll amplitude. We already mentioned in 

subchapter 6.2.3 that the nonlinear term of the roll equation is the factor limiting the 

amplitude of parametric response (parametric resonance in a linear system generates 

unlimited response). Therefore, adequate modeling of damping is the critical for 

parametric resonance simulation (another nonlinear factor, the GZ curve is known 

exactly). The LAMP simulation also demonstrated that the above-waterline geometry is a 

major factor to generate roll parametric response [France, et al, 2003].

The reason why the parametric resonance can be encountered in irregular seas is the 

group structure of irregular waves, see fig. 8.15 (see also [Blocky, 1980], [Tikka and 

Paulling 1990]). As we have discussed it earlier in subchapter 8.2.4, the envelope of 

irregular seas can be presented as a slowly changing function, which is another exhibition 

of this group structure. It is also known that frequency in the wave group does not change 

much (it is also the result of a relatively narrow wave spectrum). So, if a ship encounters 

a group of waves, which are long enough, parametric roll oscillations can build up to 

significant amplitudes. 

Fig. 8.15 Group structure of irregular seas 

Group structure of waves also shows why roll damping has significant influence on roll 

variance and maximum amplitude in irregular seas. An increase of roll damping (for 

example, due to increase of speed) leads to an increase of excitation threshold (see 

Group 2 Group 3Group 1 Group 4 

t

w
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subchapter 6.2), and then groups with smaller waves are no longer capable to produce 

parametric excitation, as they are below the threshold. 

Adequate numerical simulation of parametric roll, therefore, requires a good model of 

roll damping. Some of the numerical codes allow tuning to reproduce results of a roll 

decay test [France, et al, 2003], [Belenky, et al, 2006]. ABS [2004] requires such a 

tuning to be performed when numerical simulations are used for development of ship-

specific on-board guidance. 

We will briefly discuss some of the statistical issues related to group structure of waves 

and their correlation with the group structure of roll response in subchapter 8.6.3. Here, 

we consider some outcomes of this group approach [Boukhanovsky and Degtyarev, 

1996] [Degtyarev and Boukhanovsky, 2000]:  

Influence wave height in-group does not have a significant influence on amplitude of 

parametric response. However, periods of wave in-group are very important. 

Parametric response occurs in long groups with a large number of waves. 

Sequence of short groups with similar periods is more dangerous for a ship than one 

long wave group. 

If a ship encounters a group of wave without static bias, the parametric response is 

independent of initial conditions. However, it is not correct for real (asymmetrical) 

waves.

Considering parametric response for a different type of wave environment (wind waves, 

swell and complex seas) the following outcomes were reached: 

Swell is the most dangerous wave regime for parametric resonance. Usually such a 

regime produces groups with 13-14 waves, although wave height and steepness are 

small.  

Wind waves are less dangerous than swell since they have less pronounced group 

structure. Nevertheless, period coincidence makes stormy seas dangerous (see above 

description of post-Panamax containership), though group size is small: less than 10. 

For moderate sea periods, they are more dispersed and length of a group is up to 12. 

However, since period (or repetition of consequence group periods) has more effect, 

the stormy sea is more dangerous than a moderate one. 

Complex sea is characterized by very weak group structure. The number of waves in 

a group is less than 8. Periods are dispersed significantly, so significant parametric 

excitation is unlikely. 

8.5 Influence of Gusty Wind 

8.5.1 Distribution of Aerodynamic Pressures 

The next step towards a more realistic model of ship motions in irregular seas is taking 

into account the stochastic character of a gusting wind [Sevastianov, 1994]. We present a 
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horizontal component of wind speed as we have described it in subchapter 8.2.1, formula 

(8.50):

 )()( tuutu
GA

Here, uA is a mean value of wind horizontal speed and uG(t) is the fluctuating part of the 

process. We assume wind velocity has a Gaussian distribution and look for wind 

pressures or wind forces.

The relationship between wind velocities and pressures is nonlinear: 

22

222

fAaa
uuu

p  (8.210) 

Here, we introduce non-dimensional wind velocity uf as: 

A

f
u

u
u  (8.211) 

It can be expressed via aerodynamic pressure as: 

pKp
u

u
Aa

f 2

2
 (8.212) 

Since we are interested in positive wind speed, we shall carry out our further analysis 

without a sign of absolute value.

Using the well known formula for the distribution of monotonic deterministic function of 

a random argument, we can obtain a formula for probability density of aerodynamic 

pressures caused by horizontal component of wind speed: 

g p f p
d p

dp
( ) [ ( )]

( )
 (8.213) 

Here, (p) is the expression for wind velocity as a function of aerodynamic pressure, 

which is formula (8.212) in our case. Evidently:  

ufuf
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2
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8
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2

 (8.214) 

Here, Vuf  is a variance of non-dimensional wind velocity uf  .

It can be seen clearly that an exponential term is present in (8.214). The distribution of 

aerodynamic pressure is different from a Gaussian distribution. The appearance of this 

distribution is shown in fig. 8.16. 

As it can be seen from equation (8.214) and from fig. 8.16 the probability density of the 

pressure has a singularity at p=0.  However, the following integral g p dp( )  converges 

and is equal to 1. Also: 
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1)(
0

dppg  (8.215) 

Where  is a small value. This can be proved by the following substitution: 

p

dp

V

K
dz

V

kp
z

uu
2

1
and

1

We shall get: 
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 (8.216) 

Where is the Laplace function: dxzx )5.0exp()( 2

The value of  here is very small: in our example .

Fig. 8.16 Probability density of pressure (dashed line is Gaussian distribution), uAm = 27 m/s , Vu =

0.046, A= 1.25 kg/m
3
 [Sevastianov, 1994] 

 Let us estimate how large an approximation error we will make if the true distribution of 

gusty wind pressure (8.214) is substituted by a Gaussian distribution. This can be done in 

a more convenient way by introducing a dimensionless wind pressure that can expressed 

as:
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2uC
P

 (8.217) 

“True” and Gaussian distributions of non-dimensional wind pressures can be expressed 

as follows, correspondingly: 
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As it can be clearly seen, if the Gaussian law is applied, then the mean of the 

dimensionless wind pressure is equal to unity and its variance is: 

fuCp
VV 4  (8.218) 

Relative error can be expressed as: 
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 (8.219) 

Weighted mean square error of the given range [CP1; CP2] (using the distribution density 

as a weight function) looks like: 
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A numerical example of the weighted mean error calculation is given below in table 8.2. 

The error cannot be estimated for Vfu=0.046 when the range is 
Cp

V31  because the 

beginning of the range has a negative value. 

Table 8.2 Numerical example of error estimation 

Variance Vu 0.0169 0.046 

Range, p 1- p

1+ p

1-2 p

1+2 p

1-3 p

1+3 p

1- p

1+ p

1-2 p

1+2 p

1-3 p

1+3 p

Range, Cp 0.74-1.26 0.48-1.52 0.22-1.78 0.57-1.43 0.14-1.86 - 

Error, % 1.7 7.0 7.4 8.2 6.0 - 

These examples show very clearly that the Gaussian approximation for the “true” law of 

pressure distribution is more accurate for small variances of relative wind speed.  Further, 

we shall assume a Gaussian distribution of aerodynamic pressure in the first expansion. 
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8.5.2 Fourier Presentation for Aerodynamic Forces 

Aerodynamic forces and moments caused by gusty wind also can be presented with a 

Fourier series using the same frequencies that were set up for wave presentation. 

However, the set of initial phase angles should be different since we assume that wind 

and waves are not synchronous:

N

i
AiiYiYAmYA

taFtF
1

)sin()(  (8.221) 

N

i
AiiMiXAmXA

taMtM
1

)sin()(  (8.222) 

These presentations presume a Gaussian distribution for aerodynamic forces and 

moments caused by gusty wind. We have discussed how applicable such an assumption is 

in relation to wind pressures (see subchapter 8.5.1) and found the error acceptable. 

Because the integration operation is linear, it does not change the character of a Gaussian 

distribution and we can assume a Gaussian distribution of aerodynamic forces and 

moments as well without any additional stipulations.

This means that using the formula we neglect the second power of the fluctuating part of 

velocities u:

)2(
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mxA  (8.224) 

Expressions (8.223) and (8.224) yield formulae for Fourier amplitudes and mean values 

in (8.221) and (8.222): 

iAWayYi uuACa 0  (8.225) 

iAAWamxMi uKGzuACa 0)(  (8.226) 

2

2
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a
yYAm uACF  (8.227) 
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2

2 KGzuACM AAW
a

mxXAm  (8.228) 

Where u0i is to be defined from an appropriate wind spectrum with an accepted set of 

frequencies.

8.5.3 Swaying and Drift in Beam Irregular Seas 

We have considered heeling wind action on a ship in subchapter 7.1.3. We have seen that 

wind causes drift. This leads to the generation of an additional heeling moment by a pair 

of wind horizontal forces and hydrodynamic reaction on drift. To include this factor into 

the roll model in irregular seas, let us consider an equation of horizontal motion.  
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Following [Belenky, 1995] we will use a horizontal motion equation of the following 

form (assumption of its independence from roll was addressed in [Belenky, 1990]) : 

 )()()()( 022 tFtFyFyam YAYEHY  (8.229) 

Here, )(0 yF HY  is hydrodynamic drift reaction, FYE(t) is wave excitation and FYA(t) is 

aerodynamic force considered in subchapter 8.5.2. 

We present velocity of horizontal motion as a sum of a constant and time varying 

components analogously to wind velocity: 

 )()( tyvty tD  (8.230) 

Using formula (7.12) for the hydrodynamic reaction: 

DHHY A
ty

CF
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2

0  (8.231) 

The equation (8.229) is nonlinear. We linearized it for further use with the piece-wise 

linear approach. It is necessary only in order to get a solution for capsizing probability in 

closed form. If numerical simulation is used, linearization is not needed. Linearization 

can be done with any appropriate method. Here, we just drop the second power of 

fluctuating horizontal velocity, assuming it is small in comparison with a constant drift: 

 )()(5.0)( 2

22 tFtFvACyvACyam YAYEDDHtDdHt  (8.232) 

Equalizing time independent terms, the constant horizontal velocity component vD can be 

found:
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Now (8.232) is a linear differential equation and its solution can be found: 
N

i

iiiiyt tbtCty
1

)sin()exp()(  (8.234) 

Here:  bi - harmonic amplitude of horizontal velocities: 

b
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 (8.235) 

y is relative horizontal damping coefficient: 

)( 22am

vAC DDH
y  (8.236) 

fi  is amplitude of total horizontal excitation: 
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i is phase angle of total horizontal excitation: 

AiYiEiEYi

AiYiEiEYi
i

aa

aa

coscos

sinsin
arctan  (8.238) 

Here, aEYi is the amplitude of wave excitation for swaying. For the first expansion it can 

be taken in the following form [Belenky, 1990, 1995]: 

AiiYEYi Mgka )(  (8.239) 

With kY( ) being the reduction coefficient taking into account finite ship dimension in 

comparison with the wave. It tends to 1 if a ship can be considered small in comparison 

with the wave. Ai is amplitude of the wave slope for component i.

i is initial phase angle of swaying motion velocities: 

i

i

y

arctan  (8.240) 

Summarizing, we can write a final general solution of the horizontal motion equation: 

N

i

iiiiDy tbvtCty
1

)sin()exp()(  (8.241) 

Here, C is the arbitrary constant of horizontal motion depending on initial horizontal 

velocity )( 0ty :

C y t v bD i i i
i

N

( ) sin( )0
1

 (8.242) 

An example of time history for horizontal velocity is given in fig 8.17. 

Fig. 8.17 Transition process of horizontal velocity, dashed line is drift velocity without swaying 

influence

 t

v
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8.5.4 Roll Under Action of Beam Irregular Seas and Gusty Wind 

We continue consideration of gusty wind effect on roll in irregular seas. Let us 

supplement the equation of horizontal motion with the roll equation from [Belenky, 

1995]. We consider the following system of equations; they describe ship motion under 

combined action of gusty wind and irregular seas: 

)()()()()(

)()()()(

02444

022

tMtMyMyaGZmgNaI

tFtFyFyam

XAXEHXxx

YAYEHY
 (8.243) 

Here N  is linearized roll damping coefficient and FYE(t), MXE(t), FYA(t) and MXA(t) are 

wave and wind excitation force and moment correspondingly. They are presented as a 

Fourier series using random phase set Ei and Ai. Since we do not consider roll influence 

on drift and sway, it is enough to consider only the roll equation: coupling with horizontal 

motion may be included into the excitation: 

)()()()()( 02444 yMyatMtMGZmgNaI HXXAXExx  (8.244) 

We present this hydrodynamic moment MX0H similar to horizontal motion velocity, see 

formula (8.230): 

M M M tX H X Hm X Hf0 0 0 ( )  (8.245) 

We already considered this moment for regular seas in subchapter 7.1.3:

cos))((5.0 2

0 HPDDHHmX zKGvACM  (8.246) 

cos))((5.0)(0 tHPDDHHfX yzKGvACtM  (8.247) 

Here, zHP is pseudo centre of elevation (see subchapter 7.1.3). Actually, hydrodynamic 

moment is dependent on heel angle and it is a nonlinear term, so it is placed on the left 

side of the roll equation: 

yatMtMtMGZmgNaI XAXEHXxx 24044 )()(),()()(  (8.248) 

It can be linearized; however, to facilitate the application of the piecewise linear model of 

capsizing, we use substitution 
D

, where D is static heel angle caused by constant 

component of the wind. 

Descriptions of further development of models for roll motions under action of wind can 

be found in [Paroka, et al, 2006, Paroka and Umeda 2006].
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8.6 Probabilistic Qualities of Nonlinear Irregular Roll 

8.6.1 Ergodicity of Nonlinear Irregular Roll
1

We have considered ergodicity as a general quality of a stochastic process in subchapter 

8.1.4. We also discussed in subchapter 8.2.3 that a stochastic process of irregular sea 

waves is assumed ergodic.  

It is known from probability theory that the output of a linear system is always ergodic if 

its input possesses ergodicity. Evidently, linear system response to the external excitation 

is precisely described by the RAO. This operator changes amplitude and phase of each 

component of the Fourier presentation leaving the frequency set untouched, which is an 

essence of the Weiner-Khinchin theorem (see subchapter 8.3.1). It means that we get a 

Fourier presented process on output as an exact response. This kind of response cannot 

deviate from ergodicity. A strict proof can be found in [Kramer and Leadbetter, 1967]. 

However, there is nothing proved concerning the response of general nonlinear systems. 

Consequently, the response of a nonlinear system may be non-ergodic. We need to know 

how significant is the error for application purposes. Precisely, what kind of error do we 

make if we neglect this absence of ergodicity for the nonlinear roll response. 

Usually the presence or absence of an ergodic quality is fixed relative to a certain 

probabilistic characteristic. We will work with the variance, since it is the most common 

way to describe intensity of ship motions.  

How do we check the ergodicity? Let us 

obtain realization and calculate its variance 

after the first 50 seconds (or other interval). 

Then, repeat the calculation for the first 100 

s, 150 s, 200 s and so on. We receive a 

sequence of variance estimates that 

theoretically should converge towards the 

true value of the variance. This sequence is 

shown in fig. 8.18. The case shown there is 

purely illustrative, we just took the process 

presented by a Fourier series and with a 

known variance.

As it can be clearly seen from fig. 8.18, this 

sequence makes an oscillating curve 

converge to the true value of the variance. The amplitude of the oscillations is decreasing 

with time, so the convergence of the estimate to true value can be visualized. 

Now let us consider the linear model of roll: 

)(2 2 tE  (8.249) 

Excitation presented with the Fourier series: 

                                                          
1 Written in co-authorship with Prof. Alexander B. Degtyarev and Dr. Alexander V. Boukhanovsky of 

Institute for High Performance Computing and Information Systems (Russia). 
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Fig. 8.18 Sequence of variance estimates plotted 

against time for one realization 
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Despite the linear system, (8.249) does have an analytical solution the Monte-Carlo 

method is used (see subchapter 8.3.6) in order to be consistent with further nonlinear 

study. We generated several sets of initial phases, used each of them to create a set of 

realizations of the excitation. Then we applied the Runge-Kutta method (see subchapter 

4.2.5) to get the roll response. The variance of each realization was estimated in the 

above manner for the interval increasing with a step of 50 seconds. The resulting 

sequences are plotted against time in fig. 8.19a [Belenky, et al, 1995, 1998]. 

Another way to visualize absence or presence of ergodicity is to calculate the confidence 

interval for variance estimates for each realization and plot them along with the estimates, 

see insert in fig. 8.19a. Method of calculation of confidence interval for realization of 

ergodic is briefly described in Appendix 2 [Belenky 2004]. 

To see the effect of nonlinearity on ergodicity, a nonlinear restoring term is introduced.  

)()(2 2 tf m  (8.250) 

Exactly the same procedure is applied to the system (8.250), and the result is shown in 

fig. 8.19b. The GZ curve is shown in the second insert of fig. 8.19b. 

Comparing cumulative variances in fig. 8.19 (a) and (b), it can be see that the tendency to 

convergence is visually better in the linear case. The cumulative variances of a nonlinear 

system in fig. 8.19b show a tendency to go almost parallel to each other, so convergence 

is visually worse for the nonlinear system. 

Comparing the plots of confidence intervals; it can be seen that in the case of a linear 

system in fig 8.19a, the boundaries of confidence are lined up in a more or less orderly 

fashion. At the same time, in the case of a nonlinear system, these boundaries are shifted 

against each other. 

It is visually clear from fig. 8.19 (a) and (b) that the difference between variance 

estimates is larger for a nonlinear system. A measure was proposed in [Belenky 2004] to 

quantify this difference. This measure is essentially a shift between confidence intervals 

averaged over available realizations and presented in terms of probability
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Here P  is the confidence probability, n available number of realizations, Pij is a 

probability that the true value of variance for the realization i belongs to an intersection 

between confidence intervals of realization i and j, see fig. 8.20.  If there is no shift 

between the confidence interval, Pij= P  and the measure equals zero.  

This measure is meant to be used relatively, comparing its value for nonlinear roll with 

the similar value calculated for the process of excitation of a similar linear system, as 

they are known to be ergodic.
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Fig. 8.19 Cumulative variances and confidence intervals of variance estimates for linear system (a) 

and nonlinear system (b) 
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 A significant increase in the numerical value of 

this measure over the linear system indicates 

possible practical non-ergodicity and the necessity 

to consider several realizations. In the considered 

example, the measure for the linear system was 

0.08 while for the nonlinear system, it reached 0.25. 

A detailed description of this measure is placed in 

Appendix 2.

This analysis, however, does not necessarily 

establish absence of ergodicity in a strict theoretical 

sense. The time duration is limited. Maybe if we 

increase time duration, the difference between the 

values of this measure would disappear? It is 

possible; however, it does not matter for practical 

calculations, as the time is always limited while the 

wave conditions still could be considered stationary. If we cannot use an ergodic 

assumption during this time, then the process is not ergodic for our practical purposes. 

(This is why the term “practical non-ergodicity” is being used; another term used for the 

same concept is “cyclic non-stationarity”.) 

The physical reasons of this phenomenon were addressed in [Belenky, et al, 1995, 1997, 

1998]. It was suggested that fold bifurcation may be one of these reasons.  It was found 

that the measure of non-ergodicity increases as the system reaches conditions where 

expected response domain covers frequency band with fold bifurcation possible. Model 

tests carried out in the towing tank of the National Research Institute of Fisheries 

Engineering [Belenky, et al, 2001] have shown, however, that fold bifurcation may not 

be the sole reason for practical non-ergodicity. 

8.6.2 Distribution of Nonlinear Irregular Roll 

It is known that the wave surface elevation can be presented as a Gaussian stochastic 

process as well as the process of angles of wave slope. There is also a well known proof 

that a linear system having Gaussian input produces a Gaussian output as well.

Here we address the question: if the difference between the real distribution of output of a 

nonlinear system with a Gaussian distribution strong enough, that makes it impossible to 

assume a Gaussian distribution of the output for practical calculation purposes? We focus 

on the Monte-Carlo method. An alternative approach is based on the application of 

Markov processes, its background is considered in subchapter 8.6.4.

Nechaev [1989] obtained distribution of irregular nonlinear roll using the Monte-Carlo 

method. The roll response process had a non-zero mean value. The resulting histograms 

are given in fig. 8.21. It is quite clear that the distributions in fig. 8.21 are not Gaussian. It 

is easy to check it using standard methods of checking distribution hypothesis as 
2
 or 

Kholmogorov criterion. It is necessary to remember, however, that if a method is 

intended for random variables rather then process, it may require independent data. Time 

history of realization of a stochastic process is not necessarily present in such a data, as 

],[],[ 2211 baba
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Fig. 8.20 On measure of ergodicity 
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dependence may be quite strong between two consecutive points. Therefore some points 

need to be skipped to allow the autocorrelation function to die out.
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Fig. 8.21 Histograms of nonlinear roll angles for the ship with initial bias 13 degrees (a) and 8.8 

degrees (b) [Nechaev, 1989] 

Belenky [1993, 1994], Belenky, et al, [1998] contains results of simulation using the 

system (8.243). Taking into account absence of ergodicity, distributions were calculated 

using a whole ensemble of realizations. The appearance of the GZ curve is given in fig. 

8.22. Resulting distributions are given in fig. 8.23.
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As it can be clearly seen from fig. 

8.23, the discrepancies between the 

Gaussian and actual distribution are 

visually negligible.  The application 

of a Gaussian type of distribution 

seems reasonable. 

Fig. 8.22 “Normal” GZ curve Fig. 8.23 Histogram of severe roll. Solid line is 

Gaussian distribution. 

Let us see now whether the form of 

the GZ curve can influence the 

distribution, appearance of GZ curve 

is given in fig. 8.24 and the 

distributions obtained are shown in 

fig. 8.25. 

Fig. 8.24 Exaggerated S-shaped GZ curve Fig. 8.25 Histogram of severe roll velocities for 

exaggerated S-shape GZ curve.  Solid line is Gaussian 

distribution. 
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It can be seen clearly from fig. 8.25 that the distribution for roll with an S-shaped GZ

curve is not Gaussian. 

The difference between these cases can be explained in the following way. Nonlinearity 

in the first case becomes large when some of roll angles reach the peak of the GZ curve. 

Such roll angles are rare, so nonlinearity does not have a large influence on the 

distribution. Therefore, the character of the distribution mainly is defined by the most 

statistically frequent.  Roll angles that are located near the origin, where the Nonlinearity 

is not the significant. 

Contrary to the first case, the second GZ curve has a significant nonlinearity in the 

vicinity of the origin, where most of the roll angles in the set are concentrated. Statistical 

influence of Nonlinearity is quite significant there, which can be clearly seen in the 

resulting distribution. 

Probability density of the processes of roll angles and angular velocities can be 

approximated with Tchebysheff-Hermite polynomials [Sveshnikov, 1968] for moderate 

Nonlinearity at the origin. Then, the simulation may be limited with calculation of the 

third and fourth central moments. This technique is called Gram-Charlier or Egenworth 

asymptotic expansions. This approach was used by Haddara and Zhang [1994], Belenky 

[1994].

The Tchebysheff-Hermite polynomial can be defined as: 

)exp()exp()1()( 22 x
dx

d
xxH

l

l
l

l  (8.252) 

We search the series in the following form: 

0

2 )()exp()(
i

ii xHbxxf  (8.253) 

This series converges if f(x) has a finite number of discontinuities and: 

dx
xx

xf
2

2

4

)(
exp)(  (8.254)  

The series (8.254) converges if probability density f(x) decreases quickly enough when 

argument x is increasing. 

To obtain coefficients bi, it is sufficient to multiply both sides of the equation (8.253) by 

Hl(x) and then integrate it by x for infinite limits. This operation yields: 

)(11)(1
)( )(

3
2
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l
ll  (8.255) 

Where: 

2
exp

2

1 2x
x  (8.256) 
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(l)
(x) is the derivative of (x) of the l-th order and al are the coefficients, which can be 

defined as: 

4,...)3,(;
!2!)!2(

)1()2/int(
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l  (8.257) 

Where: Ml is the l-th central moment of the distribution. Proceeding up to the fourth order 

derivative, we obtain: 
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Here: /)( xxz ;  is standard deviation; M3 is the third central moment of the 

distribution; M4 is the fourth central moment of the distribution; Ex is excess kurtosis of

the distribution, Sk is skewness of the distribution: 

3;
4

4

3

3 M
Ex

M
Sk  (8.259) 

Formula (8.258) can be applied for the moderate case of S-shaped GZ curves. Increasing 

nonlinearity at the origin may cause (8.258) to oscillate.

The assumption of the Gaussian distribution should be applied carefully for nonlinear 

roll: special attention has to be paid to the behavior of the GZ curve in the vicinity of the 

equilibrium. 

8.6.3 Group Structure of Irregular Roll
1

We previously mentioned the group structure of the roll process, while considering 

parametric resonance in irregular seas (subchapter 8.4.4). Here, we look at this subject 

closer, also in conjunction with probabilistic qualities of parametric roll response. 

Group structure of waves makes analogous the group structure of ship roll. Since the ship 

is a dynamical system, it generally acts as a filter. The group structure of roll motions 

experiences the following transformation: 

Large motion inertia, i.e. the relation between any and the largest peak in the group 

more than 0.8, the number of cycles in group 8 and more; 

More frequent encounters of intensive groups with excitation increasing; 

Growth of the number of cycles in the group with excitation growth. 

Parametric response is narrower banded than in roll resonant mode, therefore parametric 

oscillations have stiffer group structure than waves. 

For consideration of the correlation between waves group structure and ship roll, we 

introduce a new statistic. It represents the maximum amplitude in the group and it 

depends on the number of waves in-group (n), maximum wave height (h
0
), period (T

0
)

and initial heel with which ship encounters wave group ( 0): 

                                                          
1 Written in co-authorship with Prof. Alexander B. Degtyarev and Dr. Alexander V. Boukhanovsky of 

Institute for High Performance Computing and Information Systems (Russia). 
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 ),,,( 0

00

maxmax Thn  (8.260) 

Degtyarev and Boukhanovsky [1995, 2000] carried out numerical simulation using an 

auto-regression model of waves (we considered the auto-regression model in subchapter 

8.2.5) and subdivided ship oscillations into three classes using statistics (8.260). 

1. Ordinary linear oscillations. Their characteristics are:

The height of the maximum wave in the group is higher than anywhere else and it 

increases with the above-mentioned statistics increasing. 

In general, wave period is greater than the period of parametric excitation and it 

increases with statistics increasing. 

Distribution of wave numbers in the group is sufficiently compact (from 3 to 6-7). 

The statistics are independent on initial heel angle at the entrance. 

2. “Primary parametric oscillations”. The values of the chosen statistics are in 

boundaries from “quasi-linear oscillations” up to 1/3 approximately. These 

oscillations are characterized by the following features: 

The height of the maximum wave in the group is somewhat less than anywhere 

else and it is always equal to h  for waves in general. It means that parametric 

oscillations could be held by waves of any height. Only the period value is 

important. 

Wave period is nearly equal to parametric exciting period. Variance of T
0
 is not 

large.

Number of the waves in the group increases from 3 to 8-12. 

The statistics are independent on initial heel angle at the entrance. 

3. “Secondary parametric oscillations”. We can find such kinds of oscillations when one 

wave group generates parametric excitation and then another similar wave group 

approaches the ship. Here, the values of max are greater than . The main 

characteristics of this class are: 

The same characteristic of maximum wave height and period in the group as for 

primary parametric excitation. 

Distribution of the wave numbers in the group is compact again. It is not 

necessary to have a large length of the group for large roll to continue. 

Statistics depend on heel. This heel is equal to static heel that appears during 

parametric resonance. This is a criterion that the ship enters a new group with 

developed parametric oscillations. 

All these qualities are summarized in table 8.3. 
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Table 8.3 Three types of oscillations in parametric excitation case 

Quasi-linear oscillations Primary parametric 

oscillations

Secondary parametric 

oscillations

max ql ql < max 1/3 max> 1/3

genhh genhh genhh

ex ex ex

3  n  7 3  n  12 3  n  8 

00 00 eq0

8.6.4 Application of Markov Processes 

It is possible to obtain at times an analytical solution for the distribution of the stochastic 

response of a dynamical system, if we consider it as Markov process. What kind of 

stochastic process is called ‘Markov’? The current value of the Markov process depends 

only on the value in a previous moment  of time and does not depend on the previous 

history of the process.

To formulate this quality more strictly, let us consider the conditional probability density 

),...,|(
11 kk

xxxf  where xk   is the current value of the process and there are known values 

in previous moments x1 ,..., xk-1 , [Sveshnikov, 1968]. For the Markov process: 

 )|(),...,|(
111 kkkk

xxfxxxf  (8.261) 

The Markov process can be fully characterized by the conditional distribution at two 

subsequent moments of time.  

It is more convenient to consider such a conditional distribution as a function of four 

arguments ),;,( yxtf , two subsequent moments of time t and  and corresponding values 

of the process x(t) and y . We consider some arbitrary moment of time t1, that lies 

between t and t< t1< . The above mentioned conditional distribution ),;,( yxtf  can 

P(n)

n

P(n)

n

P(n)

n
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be expressed then through two other conditional distributions of value z that has taken 

place in the moment t1:

dzyztfztxtfyxtf ),;,(),;,(),;,(
11

 (8.262) 

The equation (8.262) is known as the generalized Markov equation or Markov-

Smoluchowski-Chapman equation.  

The principal advantage that could be reached by using the Markov process is that the 

function of the conditional distribution ),;,( yxtf  can be considered as a solution of one 

of two differential equations in partial derivatives: 

f

t
a t x

f

x
b t x

f

x
( , ) ( , )

1

2
0

2

2  (8.263) 
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2
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2

2  (8.264) 

The difference between these two equations is that (8.263) concerns the previous moment 

of time and (8.264) concerns the current moment of time. The equation (8.263) is called 

the first Kholmogorov equation. The equation (8.264) is called the Fokker-Plank-

Kholmogorov (or the second Kholmogorov equation). Functions a and b can be 

expressed as the following limits: 

xXXY
t

xta
t

|
1

lim),(  (8.265) 

xXXY
t

xtb
t

|)(
1

lim),( 2  (8.266) 

Here, )(txX  and )(yY , symbol  means averaging procedure.  

The physical meaning of these functions is the following: the function a characterizes a 

velocity of changing ordinate of the process and the function b characterizes velocities of 

changing of conditional variance of the ordinate. 

The concept of the Markov process can be generalized for the aggregate of several 

stochastic processes or, in other words, for a multi-dimensional stochastic process; 

formulae (8.263)-(8.266) have the following appearance in this case: 

Markov -Smoluchowski-Chapman equation: 

nnnnn
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dzdzyyzztfzztxxtf
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 (8.267) 

The first Kholmogorov equation: 
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Fokker-Plank-Kholmogorov equation: 
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Functions ai and bij have the same sense as in the previous case: 

nii
t
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 (8.270) 
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To define the Fokker-Plank-Kholmogorov equation, it is necessary to find functions ai

and bij. It can be done if the components of the multi-dimensional Markov process satisfy 

a system of differential equations (which must be in the form of the roll equation in our 

case):

nitxxtgxxt
dt

dx
kn

n

k

ikni
i ,...,1;)(),...,,(),...,,( 1

1

1  (8.272) 

Here ),...,,(
1 ni

xxt  and ),...,(
1 nik

xtxg  are arbitrary functions of time, xi are components 

of the Markov process, and k(t) are mutually independent Wiener processes (or white 

noise processes, see subchapter 8.2.4).

If the relationship between the components of the Markov process is expressed by the 

system (8.272), then the following formulae can be applied: 

 ),...,,(),...,,(
11 nini

xxtxxta  (8.273) 
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111,
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To solve the problem of distribution of large roll, we introduce a two-dimensional 

Markov process: 
1

x ;
2

x .  We consider the following roll equation in a general 

form: 

 )()()( tsr E  (8.275) 

Here, )(r  is the nonlinear damping term; s( ) is restoring term and E (t) is excitation. 

To be able to apply the Markov process analysis we should make some special 

assumption concerning excitation. We assume E (t) is a stationary stochastic process 

with the qualities of white noise. Substitution of Markov process components 
1

x  and 

2
x  transforms the equation (8.275) into a system of differential equations of the first 

order:

)()()( 12
2

2
1

txsxr
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 (8.276) 
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To find functions ai and bij in our case, we can use formulae (8.273) and (8.275): 

)()(),,(;),,( 122122211 xsxrxxtaxxxta  (8.277) 
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Consequently, the Fokker-Plank-Kholmogorov equation can be rewritten as follows: 
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Expression (8.279) is the differential equation in partial derivatives of the parabolic type. 

To solve it both initial conditions and boundary conditions need to be specified. 

Roberts [1980, 1982] presented a review of the application of the Markov process for 

nonlinear roll in irregular seas. The general problem of application of Markov processes 

analysis to nonlinear dynamic system excited by white noise is considered in [Caughey, 

1963]. The stationary solution of Fokker-Planck-Kholmogorov equation for the case of 

nonlinear roll was reviewed in [Haddara, 1974].

Caughey [1964] showed that an analytical solution of (8.279) can be derived for the case 

when the only nonlinear term is damping. The Galerkin method was applied to solve the 

Fokker-Plank-Kholmogorov equation for the roll equation with nonlinear damping and 

restoring [Haddara and Zhang, 1994].

The combination of averaging method with the Markov process analysis was used by 

Roberts [1980, 1980a, 1982, 1982a], Haddara and Nassar [1986]. Application of the 

averaging technique allows consideration of slowly varying amplitude and phase as the 

components of a two-dimensional Markov process.  

The principle advantage of the averaging method is that the Fokker-Plank-Kholmogorov 

equation can be reduced to one dimension. This equation further can be solved for any 

type of nonlinear terms and it is not necessary to assume input excitation as white noise: 

the spectrum of the excitation can be arbitrary [Roberts, 1980, 1982]. Haddara and Nassar 

[1986] combined the averaging technique with the Galerkin method. 

Francescutto [1998] applied the Markov process to derive the probability density function 

for the response envelope. There are a number of applications of the Markov process in 

[Shlesinger and Swean, 1998]. 
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Chapter 9 

Probability of Capsizing 

9.1 Application of Upcrossing Theory

9.1.1 General 

We considered several models of capsizing in Chapter 5. In many cases, capsizing is 

associated with the crossing of a certain boundary. For example, the classical definition 

of capsizing considers crossing of the separatrix by the phase trajectory. Another example 

is the nonlinear dynamics approach (subchapter 5.3), where stability is considered as 

insufficient when the Melnikov function crosses zero level. 

When we are talking about capsizing in irregular seas, the crossing becomes a random 

event. The probability of this event then can be perceived as a probability of capsizing 

within assumptions of the particular capsizing model. 

To “randomise” a capsizing model we need to: 

Introduce a model stochastic excitation (described in subchapter 8.2). 

Calculate probabilistic characteristics of roll, roll velocities and other ship motion 

processes included in the model of capsizing. 

Calculate probabilistic characteristics of the “carrier process” - the process, by which 

crossing of the boundary is associated with the capsizing. 

Calculate the probability of crossing. 

We already considered the importance of time for practical use of probability of 

capsizing in subchapter 1.3. So, whenever possible, we have to look for the probability of 

capsizing during a given time interval.  

The theory of upcrossing fits the best for the above purpose. It looks for probabilistic 

characteristics of different random variables related with the crossing: as number of 

crossings, time above the boundary, etc. 

The following assumptions are involved in our further consideration: 

The “Carrier” process is considered stationary. This assumption is adequate: we consider 

the duration of time short enough for environmental conditions to be constant. Change of 

these conditions is already taken into account with the introduction of stochastic vectors 

of assumed situations and loading conditions, see (subchapter 1.2 and Chapter 2) with 
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further combining of those changes into long term probabilistic criterion described in 

subchapter 1.5. 

The “Carrier” process is considered differentiable. Almost all processes derived from 

motion of a mechanical object are differentiable. 

Additional assumptions concerning distribution will be considered later in this chapter. 

9.1.2 Averaged Number of Crossings 

The number of crossings of the given level by a stochastic process is a random variable. 

Here, we are looking for the mean value of this variable. Following [Sveshnikov, 1968], 

consider a stationary, differentiable process x(t), crossing the level a, sometimes between 

moment t and dtt :

adttx

atx
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)(
  (9.1) 

Taking into account differentiability of the process x(t), the system of inequalities can be 

rewritten: 

dtxatx

atx
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 (9.2) 

Consider a probability so that the conditions of (9.2) are satisfied:  

0

),()(

a

dtxa

xdxdxxfatxdtxaP  (9.3) 

Here, ),( xxf  is the joint probability density of the process x(t) and its derivative )(tx .

The internal integral in (9.3) has limits that differ only on an infinitely small value dtx ,

therefore:

),(),( xafdtxdxxxf

a

dtxa

 (9.4) 

Substitution of (9.4) into (9.3) yields: 

0

),()( xdxafxdtatxdtxaP  (9.5) 

Formula (9.5) shows that the probability of upcrossing of the level a at specific time t is

indefinitely small. Let us consider time density of upcrossing as: 

0

),(
)(

)( xdxafx
dt

atxdtxaP
tpU  (9.6) 

Time density of upcrossings can be treated as probability of upcrossing per unit of time.
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Now let us take the time period from 0 to T and divide it in N small intervals, say ti,

centred at moments ti. We introduce an auxiliary random variable ni defined on each of 

these intervals as: 

0)(or)[5.0(),5.0([0

0)(and)[5.0(),5.0([1

iiiii

iiiii

i
txttxttxa

txttxttxa
n  (9.7) 

In other words, the variable ni equals 1 if there was an upcrossing and 0 if there was not 

(upcrossing is defined as crossing the level with a positive derivative). We chose ti

small enough, so only one upcrossing could happen at this time, see fig. 9.1. 

Fig. 9.1 Auxiliary variable for upcrossings 

The number of upcrossings during time T equals the sum of auxiliary variables ni:

N
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 (9.8) 

Now, let us make ti infinitely small and simultaneously average both parts of (9.8). We 

have obtained the averaged number of upcrossings on the left-hand side. Average value 

of each auxiliary variable ni is equal to the probability of upcrossing during small interval 

ti, which also can be expressed by the time density of upcrossing pU:
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Once the interval ti is infinitely small, the probability of upcrossing at the moment t is

equal to dtpU  and the sum is converted to an integral: 
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Substitution of (9.6) into (9.10) yields the general formula for averaged number of 

crossings: 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0

t

x(t)



Chapter 9  360 

T

a dtxdxafxnm
0 0

),()(  (9.11) 

So far, we have not yet used the assumption that x is a stationary process. It means that 

formula (9.11) works even for non-stationary processes. For the stationary process, it can 

be simplified, since the distribution does not depend on time: 

0

),()( xdxafxTnm a  (9.12) 

For the stationary process, the averaged number of upcrossings does not depend on where 

we have chosen the period from 0 to T on the time axis. It depends on the duration of this 

period, e.g. on T.  So let us consider the averaged number of crossings per unit of time: 

0

),()( xdxafxnm aT  (9.13) 

If the process has a Gaussian distribution, the integral in the formula (9.13) can be 

evaluated:
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 (9.14) 

Similar considerations can be given to downcrossings; the only difference is that the 

derivative is assumed negative. 

9.1.3 Crossings as Poisson Flow  

Here, we look for probability of upcrossing during a given period of time. Consider a 

crossings as a flow of random events. Flow means that these events may happen at 

random moments of time within a given time period. We do not know apriori how many 

of these events are going to happen; neither do we know when they are going to happen. 

Graphically, the flow event could be presented as points that may appear in random 

places on the axis, see fig. 9.2. 

Fig. 9.2 Flow of random events  

t
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We assume that the crossings are rare events satisfying conditions of Poisson flow. This 

way we can use probabilistic theory of rare events, which is widely applied in the theory 

of mass service. The following statements are formally included in this concept: 

Only one crossing can happen at the given time. This is trivial for ship motions and 

mentioned here only to meet the formal definition of flow of rare events: this is the 

so-called ordinary condition. 

The probability that a crossing happens at the particular moment of time is infinitely 

small. We meet this condition without any additional assumption (see subchapter 

9.1.2).

Crossings are independent of each other. This is the most questionable assumption. 

We can meet it only if the level is high enough and the autocorrelation function dies 

out before the next crossing happens. Otherwise, the previous crossing will affect the 

next one, which is a violation of this condition.

Assuming these three conditions are satisfied, consider the probability that there will be 

nT events within the time period from 0 to T. We will make a special note every time we 

are going to use any of the above conditions. 

As in the previous subchapter, we divide our time period T into N small intervals with 

duration t each, centered at the moment ti.

Let us start from the sample: we divided our period into 10 intervals 10N  and we are 

looking for the probability that a crossing will happen precisely during the second, fifth 

and ninth intervals. Using our assumption that crossings are not dependent on each other 

(third condition) we can write: 

10987654321)3,10( qpqqqpqqpqP  (9.15) 

Here, the probability that upcrossing happens in the i-th interval is defined by formula 

(9.5):

N

Tp
tpatxdtxaPp U

iUi )(  (9.16) 

The probability that upcrossing does not happen in the i-th interval is defined as an 

opposite to (9.16): 

N

Tp
pq U

ii 11  (9.17) 

The probability that the event will happen during the second interval does not differ from 

the probability that the event will happen during the fifth interval: the probability that the 

event will happen during i-th event does not depend on i.  The same can be stated about 

the probability of the opposite event: 

37)3,10( pqP  (9.18) 

Generalizing our sample, we can write the probability that there would be nT events in nT

specific moments out of N moments total: 
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NnN

T pqnNP T),(*  (9.19) 

Here, the asterisk mark indicates the events happen at specific moments. Formula (9.19) 

expresses the assumption that crossings do not depend on each other (third condition) and 

there should be enough time between them for the autocorrelation function to die out and 

for the dynamical system to “forget” the previous crossing. 

Now let us look for the probability that nT upcrossings happen at any nT moments out of 

N moments total. To find it, we have to find all possible variants and sum their 

probabilities.

How many ways can we choose nT moments out of N without repetition (we formally 

used our ordinary condition)? The answer is known from combinatorics: it is given by the 

formula for the number of combinations without repetitions [Bronshtein and 

Semendyayev, 1997]: 

)!(!

!
),(

TT

T
nNn

N
nNC  (9.20) 

Finally, the probability that happen exactly nT upcrossings out of N possible (or during 

time T divided by N intervals):  

TT nNn

TT qpnNCnNP ),(),(  (9.21) 

The formula (9.21) expresses the well-known binomial distribution. The reason why we 

choose to repeat all the derivation is to see where and how these three assumptions are 

included in the final results.  

Now let us make t infinitely small, which means N  and look for the probability 

that it would be exactly nT upcrossings during time T:

TT nNn

T
N

T
N

TT qpnNCnNPnP ),(lim),(lim)(  (9.22) 

We substitute formula (9.20) into (9.22) and expand some of factorials:  

TT nNn

TT

TT

N
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nnN

NNnNnN
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!)...(21

)1)..(1()...(21
lim)(  (9.23) 

After dividing both parts of the fraction by )...(21 TnN , we substitute expressions 

for probability p and q from the formulae (9.16) and (9.17) correspondingly: 

N

U

T

n

U

n

U

n

T

N

nN

U

n

U

T

T

N
TT

N

Tp

n

Tp

N

Tp

N

NNnN

N

Tp

N

Tp

n

NNnN
nP

TT

T

TT

1
!

1
)1)..(1(

lim

1
!

)1)..(1(
lim)(

 (9.24) 

Now consider the limits of each component: 

1
)1)..(1(

lim
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T

N N

NNnN
 (9.25) 
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N
exp1lim  (9.28) 

Taking into account (9.25) through (9.28) we finally receive: 

Tp
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nP U
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U
TT

T

exp
!

)(  (9.29) 

The formula (9.29) is known as the Poisson distribution  for random variable nT. The 

expression TpU  is simultaneously the mean value and variance for this random variable. 

Considering capsizing related problems, we are interested usually in the probability of at 

least one upcrossing, because this event is the opposite of event “no upcrossings”. To find 

the probability of at least one upcrossing, it is enough to find the probability that there 

will be no upcrossings during given time T. This can be easily done using formula (9.29): 

TpnP UTT exp)0(  (9.30) 

The probability of at least one upcrossing can be, therefore, expressed as: 

TpnP UTT exp1)0(  (9.31) 

Taking into account formulae (9.6) and (9.12), we can rewrite (9.21) and (9.31) using 

average number of upcrossings: 

TnmnP aTTT )(exp)0(  (9.32) 

TnmnP aTTT )(exp1)0(  (9.33) 

The results (9.32) and (9.33) are very important for our further study, because they 

provide the direct relationship between the event and time period, within which it can 

happen. However, these formulae are derived with the assumption of independence of the 

upcrossing. Therefore, its application requires consideration of the applicability of the 

above assumption. 

9.1.4 Time before Crossing 

Since the upcrossing can happen at any moment within a given time period, the time from 

the beginning before it actually happens is a random variable. Let us find its distribution. 

We assume here that upcrossing flow is Poisson flow and upcrossings are not dependent 

on each other. Consider random time T0, such, that no upcrossing would happen during 

this time. Its probability could be found with formula (9.32): 
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TnmnP aTTT )(exp)0(

According to the definition of the cumulative probability distribution function: 

 )()( tTPtF  (9.34) 

We also can express cumulative distribution through probability of the opposite event: 

 )()(1 tTPtF  (9.35) 

Formula (9.34) expresses the probability that there are no crossings during time t that is 

less than T, so formula (9.33) can be applied: 

tnmtTPtF aT )(exp)()(1  (9.36) 

Finally, the cumulative distribution can be expressed as: 

tnmtF aT )(exp1)(  (9.37) 

Distribution density is defined through the derivative of cumulative distribution: 

tnmnmtf aTaT )(exp)()(  (9.38) 

Formulae (9.37) and (9.38) constitute exponential distribution. This is another important 

feature of Poisson flow: the time before the first event has an exponential distribution.

The same distribution actually applies for time between events. We can always place the 

origin right after the first event. At the same time the presence of the event at the origin 

of the time axes cannot affect the time passing until the next event, since Poisson flow 

presumes independence of the events. 

9.2 Probability of Capsizing in Beam Seas 

9.2.1 Mathematical and Physical Modeling 

In the absence of an exact analytical solution of a system of differential equations 

describing rolling and capsizing, the natural way to solve the problem is by physical 

experiment and mathematical modeling: digital and analogue. The main obstacle to this 

approach is that capsizing is a very rare random event for a ship with normal stability. To 

have enough statistics to judge about the risk function value, it is necessary to have a very 

large quantity of repetitive tests in physical experiments or calculations in digital 

modeling.

Analogue modeling allows easy time scaling; and it was the only method a few decades 

ago, when fast computers were expensive and were not available on every engineer’s 

desk. Pham Ngock Hoeh [1981] made one of the first attempts. He used the following 

system describing a ship in beam irregular seas and a gusty wind:

)()()(||)()(

)()(

44

2

1122

tMtMGZmgkNaI

tFyKyam

XAXExx

AgG
 (9.39) 
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Here: N  is a dimensional coefficient of roll damping, k( ) is a coefficient, which takes 

into account the bulwark entering water during heeling, see fig. 9.3. External 

aerodynamic force was modeled as follows: 

16
)(3.1)( 2 w

A

A
tvtF  (9.40) 

Velocity of gusty wind was assumed in the form of stochastic pulses shown in fig. 9.4 

Fig. 9.3 Model of influence of bulwark entering 

into water on roll damping 

Fig. 9.4 Model of gusty wind  

The study was done for a mid-size Russian trawler, SRT-840. The distribution density of 

time before capsizing and an estimate of capsizing risk function were produced with 

analogue modeling. Corresponding numerical data is given in table 9.1. 

Table 9.1 Numerical data for analogue modeling (Region 1 – North Sea) 

Sea state, points 8-9 Waterplane coefficient CW 0.83 

Mean wind velocity, m/s 45 Mid-ship section coefficient CM 0.82 

Length  L, m 34.80 Windage area AW, m2 129

Breadth B, m 7.30 Height of centre of windage area xA, m 2.35

Draught T, m 2.92 Angle of bulwark flooding, B, deg 18

Mass displacement m, tonne 447 KG1, m 2.68

Block coefficient CB 0.57 KG2, m 2.98

The probability to meet such a sea state is 0.04% in the chosen region [Register of USSR, 

1974]. Also, it was assumed that the chosen ship had twenty years of service, so she 

encountered about 40 hours of storms since she entered service. 

For this modeling, a Russian analogue computer MN18 was used. Such a computer has 

maximal time scaling Mt=50 and a limit of integration time T=1000. This time T was 

assumed as trial time. The number of the "tested" vessel was set up as N=30. The general 

scheme of analogue model is given in fig. 9.5. 
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B  t 

V(t)

Vmax

Time of gust 

Vmin
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Fig. 9.5 General scheme of analogue model 

The result of analogue modeling is the time before capsizing ti. The statistical estimate of 

the risk function could be evaluated as: 

)(

)(

TS

Td
 (9.41) 

Where d(T) is cases of capsizing and S(T) is total time before capsizing: 

)(

1

)]([)(
Td

i

i TTdNtTS  (9.42) 

Numerical values of these estimates were the following: 

m68.2forhour/10.0106=

m98.2forhour/10.109=

KG

KG
 (9.43) 

The confidence interval for the last case was 02.0004.0 . Empirical and 

theoretical distributions are shown in fig. 9.6.

Fig. 9.6 Cumulative distribution of time before capsizing (in absolute numbers) for KG =2.98 m 
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It is interesting to notice that a change in KG of only 0.3 m leads to dramatic increasing 

in the probability of non-capsizing during the vessel’s life time (40 hours of storms): 

P e1

0 109 4040 1 0 013( ) ..

 654.01)40( 400106.0

2 eP

Let us compare 0.654/0.013 = 50.3, the ratio is more than 50! 

The above analogue modeling assumed an exponential character of the distribution of 

time ranges before capsizing suggested on the background of Poisson flow for capsizing. 

Ananiev and Savchuck [1982] validated this exponential character of the distribution 

with model tests carried out in the towing tank of Kaliningrad Institute of Technology. 

Such an experiment could be carried out only in quite special conditions: stability of the 

model should be very low, otherwise the time required for the trials becomes very large 

and the experiments become impossible. A schematic model with U-shape sections was 

used for the experiment. Characteristics of the model are given in table 9.2. Waves were 

created by a pneumatic wavemaker, which can generate irregular waves with a given 

spectrum. The form of the spectrum is given in fig 9.7. 

Table 9.2 Characteristics of schematic model 

Length  L, m 2.2 

Breadth B, m 0.40 

Draught T, m 0.20 

Depth H, m 0.22 

Block coefficient CB 0.638 

Metacentric height GM, m 0.00256 

Transverse moment of inertia IX, kg m2 0.17 

Angle of vanishing stability, V, degree 28.5

Angle of max. GZ curve, max, degree 11

Maximal value of GZ curve, lmax  m 0.0037 

Natural frequency , s-1 0.4

Experiments were carried out in the 

following way: the schematic model 

was allowed to drift freely under the 

action of the waves. The beam position 

of the model was maintained by ropes, 

so the model had no opportunity to 

yaw. The moment in time, when the 

model capsizes was recorded, as well 

as roll and drift motion. Results of 

experiments are given: in table 9.3, in 

fig. 9.8 and 9.9. 
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Fig. 9.7 Spectral density of waves 
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Table 9.3 Numerical results of capsizing test [Ananiev and Savchuck 1982] 

Total number of  trials  N 94 

Number of trials without capsizing  NCAPS, 1 

Averaged time before capsizing  Ta, s 66.6

Estimate of the risk function  ,  s-1 0.01502

Time of running without capsizing, s  326 

Length of measuring part of towing tank, m 29 

Variance of waves V  ,  mm2 3400

Averaged velocity of drift, cm/s 10.1 

Velocity of drift, max, cm/s 2.0 

Velocity of drift, min, cm/s 5.0 

Probability of agreement by Pierson criterion 0.25 

Probability of agreement by Kholmogorov criterion 0.999 

Fig. 9.8 Roll spectral density 

calculated from model test 

measurements 

Fig 9.9 Probability density distribution for time before 

capsizing: bars -experimental values, solid line – fitted 

exponential law  

A good agreement of theoretical and empirical distributions does not disapprove the 

hypothesis of exponential distribution for the time before capsizing. Ananiev and 

Savchuck [1982] indicated that the same results were obtained for trials with other 

spectra as well as during a semi-full scale test in natural seas in the Kursches Gulf (South 

Baltic). 

Techniques using numerical simulation with a digital computer do not pose a serious 

problem nowadays. There are a number of codes available, we already mentioned in 

subchapter 8.2.4: LAMP [Lin and Salvesen, 1998] and FREDYN [Hooft, 1987]; both of 

these codes are suitable for these kinds of simulations. McTaggart and de Kat [2000] 

used FREDYN and Gumbel statistics [Gumbel, 1958] to estimate capsizing risk for 

frigates.
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Numerical simulation as a practical tool works fine for the cases when stability is 

dangerously low or environmental conditions are extremely severe. However, exposure 

time rises exponentially when we are dealing with a normal ship in hard but not in 

extreme conditions. Direct calculation probability of capsizing may be very 

computationally expensive in such conditions, since a normal vessel may have a very 

small numerical value of risk function [Belenky, 1985]. 

As a result, we cannot limit ourselves to numerical tools only; there is still room for 

analysis of probability of capsizing that is supposed to complement these numerical tools 

[Belenky, 2000]. 

9.2.2 Classical Definition of Stability  

We already considered the classical definition of capsizing in subchapter 5.1. We have 

seen that if the classical definition is used, the event of capsizing is associated with 

crossing of the separatrix by the phase trajectory of forced motion. Now we have to find 

the probability of such an event. 

The simplest answer is the following: if we assume that the joint distribution density of 

roll angles and roll velocity ),(f  is known, we can write the expression for capsizing 

probability as: 

P X f d d
Sd

( ) ( , )1  (9.44) 

 The value - ddf ),( - is an infinitely small probability that the image point has the 

coordinates ( , )  on phase plane at any moment in time. Integration of these small 

probabilities on the safe domain Sd (see fig. 9.10) yields a probability that the image 

point will stay within the safe domain, or in other words, probability of non-capsizing. 

Unfortunately, the simplest answer cannot be 

recognized as fully satisfactory. We can calculate 

probability of capsizing, but the value obtained 

will not be related with time, because we address 

the probability of crossing of the separatrix in any 

moment of time. 

A possible solution was proposed by Umeda, et al 

[1992] for combined action of irregular waves and 

gusty wind with a non-zero mean value. 

The idea was to use a distribution of amplitudes 

and relate capsizing with exceeding of the points, 

where the separatrix crosses axis . Because the 

roll angle can reach the amplitude value only twice during the oscillation period, we can 

relate the obtained probability with the duration of one cycle of roll oscillation. If we 

assume that roll is a Gaussian stochastic process (we considered the matter in subchapter 

8.6), the distribution density of amplitudes or, maxima and minima of roll angle (taking 

into account possible asymmetry of roll caused by the constant component of wind) is:  

Fig. 9.10 Safe basin or safe domain 
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The positive and the negative sign should be applied to the maxima and minima of the 

roll angle respectively. Here, Mn is the spectral moment of n-th order: 

0

)( dSM n

n  (9.46) 

 is the width of the roll motion spectrum S :
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 (9.47) 

(x) is the Laplace function: 

( ) expx
z

dz

x
1

2 2

2

0

 (9.48) 

The probability of capsizing during one period of roll oscillation can be calculated as 

follows: 

b

a

dfdfXP )()()(  (9.49) 

Values a and b are points where the separatrix crosses axis . When the mean value of 

the wind equals zero and roll is symmetrical, these values become equal to the angle of 

vanishing stability. 

We considered upcrossing theory in subchapter 9.1, it seems to be quite useful tool for 

the problem. We have a stochastic process, which is the phase trajectory and the 

boundary, which is the separatrix. The average number of the upcrossings of this 

boundary would serve the purpose. It is directly related with time and can be actually 

identified with the risk function for this particular assumed situation. The only thing to do 

is to generalize the one-dimensional case considered in 9.1 for the phase plane, so there 

will be two dimensions.  

Sevastianov [1977] considered this problem for an even more complex case: drift was 

included. So, we are working in a three-dimensional phase space. 

Upcrossing is still defined as a simultaneous satisfaction of two conditions. The first, 

phase trajectory should approach the separatrix. The second, image point should have 

enough velocity to cross the separatrix i.e. projection of image point velocity, that is 

normal to separatrix, should be positive.  

So, we are working with the following coordinates: roll angle, roll velocity and drift 

velocity:
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Gyxxx 321 ;;  (9.50) 

The separatrix is a surface that could be described by an equation: 

),( 3,21 xxfx SS  (9.51) 

The derivatives of the above coordinates are expressed as follows: 
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The absolute value of the vector of image point velocity is:  
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1|| xxxvv  (9.55) 

The image point velocity is a vector in phase space. The angles of this vector with the 

coordinate axis are the following: 

cos cos( , )v v x
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1
 (9.56) 
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 (9.57) 
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3
 (9.58) 

We obtain angles between the internal normal projection and coordinate axis: 
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The angle between the vector of image point velocity and normal projection can be 

expressed as: 

vnvnvnnv coscoscoscoscoscos),cos(  (9.62) 

The projection of the vector v on the internal normal direction of the separatrix surface is: 
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n  (9.63) 

The numerator of equation (9.63) defines the sign of normal projection of the image point 

velocity. So, we can write one of the crossing conditions 0nv  as: 
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f
xx SS  (9.64) 

We add the condition that the phase trajectory should approach the separatrix surface: 

 ),( 321 xxfx s  (9.65) 

We have received the system of equations that determines conditions of upcrossing. This 

system can be easily generalized for the n-dimensional case: 
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 (9.66) 

Consider the probability of these conditions to be satisfied at a given point on the 

separatrix surface and at the given moment of time. Let us introduce the combined 

distribution of all the components of phase trajectory and their first derivatives: 

t n nx x x x x x( ,... , ,... ), ,1 2 1 2  (9.67) 

The above probability can be expressed as follows: 

max1
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 (9.68) 

The integration has to be done for all derivatives where vn 0 . The upper limit of the 

internal integral is expressed as: 
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Here, n is the number of dimensions. For roll and drift it equals 3. Then we integrate the 

probability (9.68) over the separatrix surface S taking into account dtxdx 11 :

max1

12 ......)(

x

nnt xFdxddxdxdtSdp  (9.70) 

With: 

F x x f x x x x x x x xt S n n n( ( ,... ), ,... , ,... ), ,1 1 2 3 2 1 2  (9.71) 

The probability of upcrossing per unit of time can be expressed as follows: 

( )
( )

t
dp S

dt

t
 (9.72) 

Finally, we can write a formula for probability of the upcrossings per unit of time, which 

is the same as the averaged number of upcrossings: 

( ) ... ... ( ( ,... ), ,... , ,... ), ,

max

t dx dx dx x x f x x x x x x x x dxn n t S n n n

x

2 1 1 2 3 2 1 2 1

1

 (9.73) 

This value is the searched risk function based on the classical definition of stability. For 

the one-dimensional case formula, (9.73) gives the same result as (9.13) or (9.6). 

9.2.3 Method of Energy Balance

We already considered the energy balance approach for capsizing in regular seas in 

subchapter 7.1.5. This method is very important, since it is the background of the weather 

criterion.

According to Boroday [1968] G.A. Firsov was the first, who attempted to determine the 

probability of a ship capsizing in beam seas using the energy balance method.  

The series of research using the energy balance method for irregular seas was carried out 

by Boroday [1967, 1968]. Boroday [1968], Boroday and Nikolaev [1975], Boroday and 

Netsvetaev [1982] generalized the previous works for any course relative to waves. 

This research considered the general hydrodynamic problem of forces and moments, 

which are acting on the ship from when she has a given course in irregular seas. The 

results were the statistic characteristics of the work of those forces and moments. 

Consideration of the balance of the work allowed formulating a method for calculation of 

capsizing probability. 

Dudziak and Buczkowski [1978] proposed another approach: they considered all input 

values of the weather criterion as stochastic quantities.

Weather criterion suggests that the beginning of the wind gust coincides with the 

maximal roll angle on the windward side. The assumption was adopted, because such a 

situation is the most dangerous one: angular velocities caused by roll and by wind gust 

have the same directions in this situation. In reality, wind gust can start at any moment 

and is not related with the phase of the ship roll. But the danger of wind gust action will 
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be decreased when the beginning of its action is shifted to the moment of roll to the 

leeward side.  

Dudziak and Buczkowski [1978] proposed to calculate two probabilities: one when gust 

starts at the moment of windward roll phase (maximal danger) and another, when it 

coincides with leeward roll phase (minimal danger). Probability criterion is calculated as 

a mean value:  

)(
2

1
)( LW PPXP  (9.74) 

Here, P(X) is probability of capsizing, PW is conditional probability of capsizing when 

wind gust coincides in time with windward amplitude of roll, PL is conditional 

probability of capsizing when wind gust coincides in time with leeward amplitude of roll. 

Consider the conditional probability of capsizing if gust starts when roll angle reaches the 

amplitude value on the windward side. The initial conditions are: 

0 00    ;      st am  (9.75) 

Here, st is constant angle of heel caused by constant component of the winds pressure, 

am is a current stochastic amplitude of irregular roll. Since the ship has zero angular 

velocity at the initial moment, the kinetic energy is also zero: 

K K0 0 0  (9.76) 

The energy balance equation can be written as : 

 ),(),( 00 ttAttP A  (9.77) 

Changes of potential energy can be expressed through the dynamic righting arm (or the 

area under GZ curve):

0

),()(),( 00 PdmgGZttP  (9.78) 

The value of potential energy is a random variable, because the initial conditions are 

stochastic: 

 ),())((),( 000 nAfAmA AMMttA  (9.79) 

Here: MAm is the value of wind heeling moment, caused by constant component of wind 

pressure: it is a deterministic value; MAf is the additional wind heeling moment caused by 

wind gust. This variable has to be considered as random. 

After substitution of (9.78) and (9.79) in (9.77) and taking into account (9.76), we obtain: 

d

amst

amstdAfAm MMdmgGZ ))(()(  (9.80) 

Here: d is dynamic angle of heel, which is associated with capsizing see fig. 9.11.
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Fig. 9.11 Scheme of determination of dynamic angle of heel 

The probability of capsizing can be calculated by the integration of the distribution 

),( Afam Mf  over the area SC where the values of am and MAf cause capsizing: 

1

),(

CS

AfamAfamW dMdMfP  (9.81) 

How do we define this area? Its boundary is MAf vs. am. The points of this boundary 

correspond to critical values of amplitude am and additional heeling moment MAf. These 

values provide satisfaction of weather criterion without surplus and lack. It means that for 

the given amplitude am and additional 

heeling moment MAf, the resulting dynamic 

heel angle d is always equal to angle of 

vanishing stability to the other stability limit. 

The boundary MAf( am) can be calculated by 

sequential solution of equation (9.80) relative 

to MAf. For a number of given amplitudes am,

see fig 9.12. 

It is more convenient to calculate the integral 

in (9.81) over the area SNC, which corresponds 

to the non-capsizing domain in plane ( am,

MAf). So, the conditional probability of 

capsizing, if the beginning of a wind gust 

coincides in time with roll to the windward 

amplitude, can be calculated as: 

Afam

S

AfamW dMdMfP

NC1

),(1  (9.82) 

Now, we consider the conditional probability of capsizing if the gust coincides with the 

roll leeward amplitude. The initial conditions in this case are as follows: 

MAf

MAm

st

am

S1

S2

GZ( )

d

am

SNC1

SC1

MAf

Fig. 9.12 Critical values of MH versus am

capsizing SC1 and non-capsizing SNC1 area. 

[Dudziak and Buczkowski 1978] 
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0 00    ;      st am  (9.83) 

The energy balance equation is expressed as: 

 ))(()( amStdAfAm MMdmgGZ
d

amst

 (9.84) 

Proceeding analogously to the previous case, the conditional probability of capsizing can 

be expressed as: 

Afam

Sc

AfamL dMdMfP
2

),(  (9.85) 

Area SC2 and its border can be obtained from the energy balance equation (9.84) in the 

same manner as that in the previous case, see fig. 9.13. 

It is easier to calculate this probability by 

integrating over the non-capsizing area: 

Afam

NC

AfamL dMdMfP
2

),(1  (9.86) 

The next step is evaluation of the joint distribution 

of roll amplitude and additional heeling moment. 

Dudziak and Buczkowski [1978] assumed them 

independent:

)()(),( AfamAfam MffMf  (9.87) 

We have seen from subchapter 8.6.2 that the 

distribution of roll angles may be a non-Gaussian 

distribution. If this is the case, the problem of 

distribution of roll amplitudes requires additional 

consideration. If this is not the case, and roll distribution is Gaussian, then a Raleigh 

distribution can be used for amplitudes. 

Consider the distribution of an additional heeling moment caused by a wind gust. Wind 

velocity is expressed as a sum of mean value uAm and fluctuating part uAf(t): 

 )()( tuutu AfAmA  (9.88) 

Fluctuating part uA(t) is assumed to be a Gaussian stochastic process: 
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Here, A is standard deviation of wind velocity. Dudziak and Buczkowski [1978] 

considered the wind gust as a maximum of the stochastic process of wind velocities. 

Since secondary maxima are not of concern here, the Raleigh distribution can be used for 

the wind velocity value in the gust: 

Fig. 9.13 Critical values of MH

versus am capsizing SC2 and non-

capsizing SNC2 area [Dudziak and 

Buczkowski 1978] 

MAf

SC2

am

SNC2
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The additional heeling moment caused by a wind gust can be expressed via gust wind 

pressure:

AWAAf zApM  (9.91) 

Here, pAf is wind gust pressure; AW is windage area zA is vertical distance between the 

centre of windage area and the centre of hydrodynamic lateral resistance.  

More information on probabilistic qualities of the wind pressures can be found in 

subchapter 8.5.1. Further research in this direction was carried out by Bielanski [1994]. 

There is one more question to address: we have found the probability of capsizing, but 

during what time?  

The above method was developed for calculation of capsizing probability in the first 

semi-period of oscillation after the action of a wind gust. There is an assumption here that 

if the ship did not capsize after the first semi-period of oscillation, she will not capsize 

under action of this particular gust. Therefore, the above method yields probability of 

capsizing during one random gust of wind. Then the risk function can be estimated by 

dividing the probability by the averaged time of the wind gust, or otherwise related to 

average roll period. 

9.2.4 Piecewise Linear Method  

We introduced the piecewise linear system as the simplest dynamical system that is 

capable to reproduce capsizing as a transition to another equilibrium. Despite its non-

smooth restoring term, the piecewise linear system has all the same qualities as that of a 

conventional model of roll and capsizing. We looked at its free motions in subchapter 

4.1.2 and found a steady state solution under periodic excitation in subchapter 4.2.6. We 

have seen how the stability of this solution can be checked in subchapter 4.4.4 and that 

bifurcations are the same as a conventional nonlinear system (subchapter 4.5.4). Most 

important, we found out how simple it is to describe capsizing in a piecewise linear 

system under periodic excitation (subchapter 5.2). Also, the piecewise linear system 

helped us to understand how the classical definition of stability works (subchapter 5.2.3). 

Now, we are looking into capsizing in the piecewise linear system under the action of 

irregular seas [Belenky, 1989, 1993]. 

We have seen that capsizing in a piecewise linear system could be associated with the 

event of upcrossing of the boundary between ranges 0 and 1 (in fig. 9.14) with the 

simultaneous satisfaction of condition of the arbitrary constant A being positive 

(subchapter 5.2.2):

 )0()()( 0 APPXP mTT  (9.92) 
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We mean under PT m( )0  the 

probability of at least one 

upcrossing of level m0 during 

time T. We assume that the level 

m0 is such that the upcrossing of 

this level is a rare event. It means 

that enough time passes between 

two neighboring upcrossings for 

the autocorrelation function of roll 

to be small. This assumption 

allows us to suppose that the flow 

of upcrossings is a Poisson flow 

and consequently the probability 

we are searching for can be calculated in accordance with exponential law (see 

subchapter 9.1 for details): 

 )exp(1)( 0 TP mT  (9.93) 

Here,  is the averaged number of upcrossings - intensity of the flow of upcrossings. Its 

value depends on the distribution of roll angles and velocities (subchapter 9.1).

Consider the piecewise linear equation of roll under action of irregular waves: 
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The response can be expressed as:
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Considering distribution of motions of piecewise linear system, it was assumed that the 

process is stationary. It means that its probabilistic characteristics are independent of 

time. This assumption, however, contradicts our ultimate task: a roll process that includes 

capsizing cannot be considered as stationary. To overcome this contradiction, we 

consider the roll process before capsizing separately and assume that enough time passes 

from the start point until capsizing to judge if the process is stationary. 

The piecewise roll process before capsizing (9.95)-(9.96) consists of many segments 

corresponding to range 0 and range 1. Each of these segments has its initial conditions 

and its own free oscillations that are being generated after every crossing of the boundary 

between ranges, see fig. 9.15, where these points are marked. 

fL( )*

v

m1m0

Range 1 Range 2 Range 0 

m0

Fig. 9.14 Piece-wise linear restoring term 
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Fig. 9.15 Stochastic piecewise linear response 

We assumed that the event of upcrossing of level m0 is rare. So, there is enough time 

between crossings for the correlation function to be small and for free oscillation in 

(9.95) to die that the system (9.94) “forgets” about any previous crossings.

So, we can assume that probabilistic characteristics of roll oscillation before capsizing 

can be determined by the particular solution only. Consequently the distribution of 

piecewise linear roll is Gaussian: 
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 (9.98) 

The variance also can be calculated by forced roll solution q(t):
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 (9.99) 

Considering the piecewise linear roll response as a normal process, it is easy to express 

rate of upcrossings of level m0 as follows (see subchapter 9.1.2): 
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exp  (9.100) 

The variance of roll velocity V  also can be calculated by forced roll solution q(t): 

V V qq i i

i

N1

2

2 2

1

 (9.101) 

The next term that defines probability of capsizing is )0(AP . It means the probability 

that arbitrary constant A is positive if upcrossing of level m0 has occurred. 

Analyzing formula (4.113) we can see that this arbitrary constant depends on eigenvalues 

1,2 , initial conditions 1 1,  and values of particular solution and its derivative in the 

moment of upcrossing p p1 1, . Three of these figures are stochastic values: p p1 1,  and 1 .

Other values are deterministic: eigenvalues are determined by piecewise linear term and 

damping and 01 m . So, arbitrary constant A is a deterministic function of three 

random arguments: 

m0

t
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21

11211
111 ,,

pp
ppA  (9.102) 

Let us consider each of these random arguments in details: 

1  is a value of roll rate that is determined at the moment of upcrossing. In accordance 

with our hypothesis that upcrossings are rare events, we can substitute it by the value of 

the first derivative of the forced roll solution q1  determined at the moment of upcrossing. 

The processes of forced roll solution and its first derivative have a Gaussian distribution 

and are not correlated. So, upcrossing can take place with any positive roll rate and the 

distribution of 1q  can be assumed to be a Rayleigh distribution (absolute value of normal 

variable has Rayleigh distribution): 
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p1 is a value of particular solution p(t) that is fixed at the moment of upcrossing. The 

process p(t) is correlated with the process q(t) because these processes are generated by 

the same excitation. The correlation coefficient can be expressed as follows (subchapter 

8.3.2):
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The joint distribution of both particular solutions is: 
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The conditional distribution of p(t), if upcrossing has taken place or 0mq , is: 
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Where Vpm . Equation (9.106) can be presented in the more compact form: 
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Here:
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As can be seen from (9.108), there is a difference between probabilistic characteristics of 

p1 and the value of stochastic process p(t) at any moment of time.  

p1  is a value of the first derivative of particular solution ( )p t  that is determined at the 

moment of upcrossing. The process ( )p t  is correlated with the process q(t), nevertheless 

the processes q(t) and ( )q t  are not correlated: 
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The distribution of p1 can be derived analogously to the above distribution of p1:
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Here:
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Considering the contribution of each term in formula (9.102), we have seen in subchapter 

5.2.3 that particular solution p(t) and its first derivative ( )p t  cannot have significant 

influence because their variances are much smaller in comparison with q(t) and ( )q t

correspondingly, see fig 5.8.

So, variances of ( )p t  and p(t) are significantly smaller than V . This allows avoiding 

consideration of arbitrary constant A as a function of three random arguments that is a 

complex problem (a detailed consideration of it can be found in [Belenky, 1993]) and 

substitute p1 and p1  by their mean values. We obtain a linear deterministic function for 

one random argument: 
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To find probability that the arbitrary constant is positive it is enough to find such a value 

of roll rate at upcrossing (called further critical roll rate) that turns (9.112) into zero. 

121 /)0( aaAcr  (9.116) 

All the upcrossings with the roll rate above the critical will lead to capsizing. Using 

distribution of the roll rates at upcrossing (9.103): 

cr

dfPAP cr 111 )()()0(  (9.117) 

As it was shown in Chapter 1, it is not easy to work with probability of capsizing. Risk 

function , which is an average number (rate) of events per unit of time, is more 

practical.

Piecewise linear method allows considering capsizing as a subset of upcrossings. Then 

rate of upcrossing can be expressed as:

)0(AP  (9.118) 

Here  is an upcrossing rate (averaged number of upcrossings per unit of time) defined by 

formula (9.100). Expression (9.118) allows rewriting formula for probability of capsizing 

(9.92) expressing capsizing as an event of Poisson flow: 

)exp(1)( TXPT  (9.119) 

The risk function  derived here should be considered as a short term value; it is related 

to a particular sea state and loading condition. To emphasize this relation it is shown as 

(X|Si,Lj) – a function of particular realizations of vectors of loading conditions and 

assuming situations in the formula (1.66). 

We have completed probabilistic consideration of capsizing in the piecewise linear 

system. As we previously mentioned, a “pure” piecewise linear model was introduced for 

rather theoretical purposes. The problem of practical calculation based on a piecewise 

linear model is addressed in the next subchapter. 

9.2.5 Combined Piecewise-Linear-Numerical Method 

The "triangle" GZ curve used above is sufficient for the theoretical study and 

understanding of the physics of capsizing phenomenon, however a real GZ curve is 

required for comparison of capsize probabilities of real ships. The distribution density for 

the roll process may be different from the Gaussian. As we have seen in subchapter 8.6.2, 

this difference strongly depends on the shape of the initial part of the GZ curve, because 

the most frequently encountered roll angles are in this range and their statistical weight 

has a large influence on the result. 
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Therefore, it is desirable to have a method for practical calculation that should not be 

dependent on the particular type of roll distribution. A combined numerical/piecewise 

linear method was proposed in [Belenky, 1994], it is based upon the following 

assumptions: 

Range No. 0 remains nonlinear. The boundary of range No. 0 (or nonlinear range) is 

located at the maximum of the GZ curve. 

A broken line is used to present the rest of the GZ curve (see fig. 9.16). 

We look for initial angular velocity, which satisfies the condition A 0  in the 

beginning of the last range of the broken line.  

Further, we call this initial velocity 

“critical” since the initial angular 

velocities exceeding it would lead to 

capsizing. All the velocities less than 

the critical one would not lead to 

capsizing because of the small 

influence of the excitation on the 

motion when roll angles correspond 

to the decreasing part of the GZ

curve.

The probability of exceeding the critical angular velocity can be easily found with the 

given distributions for roll angles and velocity. The rate of flow of upcrossings (e.g. 

average number of upcrossings per unit of time)  can be calculated with formula (9.13).  

df
0

max ),(  (9.120) 

Let us consider the algorithm for calculation of the critical velocity. We approximate the 

decreasing part of the GZ curve with a broken line with angular coefficients ai and free 

terms bi. Calculation of the critical velocity can be done with any iteration method, which 

is used for solution of nonlinear algebraic equations. An auxiliary function A** ( )  is 

introduced for this purpose: 
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Here, xk-1 is the point at the beginning of the last range. The procedure for calculation of 

this function is the following. 

We start from range 0 and proceed to the range 1k .
i
 is the initial velocity at the 

entrance of the current range i.

Does the roll process reach the end of range i or not? First, we check the sign of arbitrary 

constant Ai. If Ai  is positive, the angular velocity will increase without any limits and the 

roll process will reach the end of the range i. If Ai  is negative, we calculate a time, for 

 x1

 GZ 

 x2  xk-1  xk

Fig. 9.16 Piecewise presentation of the 

decreasing part of GZ curve 
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which it is necessary for roll velocity ( )t  to reach zero. The following equation yields 

the required figure: 

 0)(t  (9.122) 

Where: 
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The equation (9.122) can be solved with any iteration method. Once the time t i( )0

was found, we check the following condition:  

( )t x
i

i0 1 .

If this is true, the roll process will reach the end of the range i.

If this condition is not true, the roll process will never reach the end of the range and 

capsizing is impossible. Therefore:  

 1)(**

i
A

We calculate a time, which is necessary for the roll process to reach the end of the range 

i:

( )t xi 1  (9.126) 

Where:  
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We calculate the roll velocity when the boundary between ranges i and i+1 is reached: 

( )i xt
i1 1

 (9.128) 

Calculations should be repeated until i reach value k-1.

When i will reach value k-1, only the value of arbitrary constant Ak-1 is calculated, which 

becomes the value for auxiliary function A** ( ) .

An initial angular velocity of roll, which makes a zero value for the auxiliary function, is 

searched. The critical initial value of angular velocity is expressed as: 

0**

cr
A  (9.129) 

The probability of capsizing finally is calculated as:  
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This method requires the distribution of roll angles and velocities as an input. These 

distributions may be the results of or results of direct Monte-Carlo simulation.  

The last method seems to be preferable. The combination of numerical simulation 

without limitation on complexity of the model and piecewise linear model, which can 

treat really rare events, promises to be the most efficient solution for calculation of 

capsizing probability during a given time. 

For further application of the piecewise linear method for calculation of capsizing 

probability see [Islander, et al, 2000, 2001], [Islander and Umeda, 2001, 2001a], [Paroka, 

et al, 2006], [Paroka and Umeda, 2006]. 

9.2.6 Methods Based on Motion Stability 

We have considered stability of roll motion in subchapter 4.4. As we have seen, loss of 

motion stability means that a small deviation will increase, taking the system to another 

stable regime of motion. However, we did not consider motion stability when we were 

looking into capsizing in beam seas (Chapter 5).  

The major drawback of the motion stability approach to capsizing is that we, in fact, 

linearized the system and, as a result, we do not know where the system goes if it is 

unstable; we just learn that this particular roll motion mode cannot exist for a long time. 

Loss of motion stability in regular seas does not necessarily constitute capsizing; the 

system may find another regime near original equilibrium, as with one with a doubled 

period of oscillation. Loss of stability of steady state mode oscillation is necessary, but 

not a sufficient condition of capsizing; however it definitely can be used as an indicator 

of approaching danger. The major advantage of the motion stability approach is we do 

not need actually to solve the roll equation in order to determine the stability of its 

solution.  

This advantage becomes important when we consider capsizing in irregular seas. At the 

same time, the possibility to get the capsizing indicator based on a linearized solution is 

rather an advantage for the problem in irregular seas. Price [1975], Haddara [1975] and 

Nekrasov [1978, 1994] developed methods that combine the motion stability approach 

and stochastic description of seaway. 

The main point of these methods is to estimate stability of the statistical characteristics of 

roll. Loss of stability of these values is associated with capsizing. External conditions that 

lead to such loss are recognized as dangerous. 

The Markov process analysis is used by Haddara [1975] and Nekrasov [1978]. Haddara 

[1975] used the Fokker-Plank-Kholmogorov equation to obtain ordinary differential 

equations relative to mean value and variance. Analyzing the stability of these equations 

gives the required evaluation of safety against capsizing in an irregular seaway. Nekrasov 

[1978] also used Markov processes with the statistical moment technique. Price [1975] 

used impulse functions to determine stability of mean and mean square. 
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Zelenin [1989, 1989a] considered ship rolling and capsizing in irregular seas by taking 

into account heaving, nonlinear roll damping and gusty wind: 

[ ( )] ( ) ( )3
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3a z t a f t f tE A  (9.131) 

Here: z(t) is heaving, f  is wave excitation and fA is wind excitation. The last value is 

presented as: 
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Here: CP is dimensional aerodynamic coefficient, uAm is mean value of wind velocity, uAf

is fluctuating part of wind velocity. Canonical presentation is used for all stochastic 

processes only: 
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Here, amplitudes of harmonics of Fourier series are non-correlated random values. They 

have a Gaussian distribution and their variance can be calculated as follows: 
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Here: s is spectral density of wave slope angles and is frequency step. Similar 

formulae can be written for all other stochastic amplitudes. 

Then, the nonlinear equation of roll was linearized and solved. The solution was also 

searched in a form of canonical presentation: 
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Then, this solution is substituted into the original equation (9.131) with some small 

deviation , exactly as we did for regular excitation, see subchapter 4.4.2. After 

simplification, we obtain the variation equation. We also introduce a new variable to get 

eliminate the damping term: 

2/exp tL  (9.138) 

As result, the variation equation is now presented in the standard form of the Hill 

equation:
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The Hill equation is a generalization of the Mathieu equation (see subchapter 6.2.2): it 

has a Fourier series where the Mathieu equation has just one sine or cosine function. 
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The Hayashi [1964] criterion expresses the condition of boundedness for this form of the 

Hill equation. This criterion consists of two inequalities: 
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Here:
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The probability of loss of motion stability at any moment of time can be expressed as 

only:

P P PL 1 1 2  (9.141) 

Where P1 and P2 are probabilities of satisfaction of the first and the second inequalities of 

(9.140) correspondingly: 
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Here, V i  is the variance of stochastic harmonic amplitudes i.

To find the probability of capsizing per unit of time, Zelenin [1989, 1989a] proposed 

multiplying the probability of loss of motion stability at any time by the mean frequency 

of roll:  
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V
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Here, V  and V  are variances of roll velocities and angles.  

9.2.7 Methods Based on Nonlinear Dynamics
1

We have seen in subchapter 5.3, that increasing danger of capsizing in regular waves 

comes with a number of nonlinear phenomena: factorization of the safe basin is one of 

them. We have seen that the Melnikov function may be used as an indicator of these 

phenomena. The Melnikov function expresses distance between stable and unstable 

invariant manifolds. Once they intersect, the system slips into chaos and the likelihood of 

capsizing increases dramatically.  

                                                          
1 The author is grateful to Prof. A.W. Troesch for fruitful discussion of the materials of this subchapter. 
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Hsieh, Troesch and Shaw [1994] considered behavior of the Melnikov function for the 

case of stochastic excitation and proposed a probabilistic measure of capsizing danger. 

The following equation of roll was used for the study: 

 )(|| 3

321 ma  (9.145) 

Here, time is non-dimensional; it is expressed in terms of natural frequency: 

t  (9.146) 

Here,  is a small value. It is important to notice that this small parameter is not present in 

the nonlinear restoring term. This is the principal difference with Melnikov analysis and 

classical asymptotic methods. If the latter ones have a linear equation as a limit when 

0 , while equation (9.145) has an undamped and unforced Duffing equation, which 

keeps all major nonlinear properties including capsizing: 

 03

3a  (9.147) 

This also means that Melnikov analysis can be considered as an asymptotic extension of 

the classical definition of stability: in this sense, it is also similar to weather criterion 

(relationship between weather criterion and classical definition of stability is examined in 

subchapter 7.1.5).

Consider the Melnikov function for the equation (9.145) (we considered Melnikov in 

general vector form in subchapter 5.3.4): 

dM EMMMM )(||)()( 0210  (9.148) 

Index “M” indicates that integration is performed along the invariant manifold. 

Excitation E is the only stochastic figure in the formula (9.148). It can be seen from this 

formula that the Melnikov function can be presented in a form of a sum of constant and 

fluctuating parts: 

 )()( 00 fm MMM  (9.149) 

The constant part is associated with damping and can be expressed in closed form 

(compare with formula (5.71)): 
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The fluctuating part is related with the excitation: 

dM mMf )()()( 00  (9.151) 

The fluctuating part of the Melnikov function is a stochastic process. Its probabilistic 

characteristics were studied in [Hsieh, et al, 1993, 1994]. It was found that: 

It is a stationary and ergodic process; 

It has a Gaussian distribution. 
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The last statement also means that mean value and variance determine distribution 

completely. It can be easily seen that mean value of the fluctuating part of the Melnikov 

function is zero: 

0)()()( 00 dmMm EMf  (9.152) 

The variance of the fluctuating part of the Melnikov function can be expressed through its 

spectrum: 
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This spectrum can be expressed with a Fourier transform in integral form: 
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CC is a complex conjugate. We need to multiply by the complex conjugate to eliminate 

the imaginary values. This is analogous to getting amplitude and eliminating phase when 

we were working with the discrete Fourier presentation, see subchapter 8.1.5. 

Here, we introduce a new variable [Hsieh, et al, 1994]: 

01  (9.155) 

The new variable allows expressing spectrum (9.154) as two Fourier transformations: 
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 (9.156) 

Here, )(S  is a known spectrum of roll excitation )(
M

S  which can be derived through 

Fourier transform of the invariant manifold: 

)2/sinh(
)(

3a
S

M
 (9.157) 

We have completely defined the probabilistic qualities of the Melnikov function. Now we 

need to build a probabilistic measure of capsizing danger. 
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We have seen in subchapter 5.3 that once the invariant manifold is crossed, the safe basin 

becomes fractal, see fig. 5.10. This means that initial conditions leading to capsizing are 

mixed with safe initial conditions. This is a “still” picture for regular waves.  In case of 

stochastic excitation, this picture is changing all the time.  

Once the invariant manifold is crossed, some areas of the safe basin become unsafe, so 

we can consider it as “transport” of initial conditions out of the safe basin. The value 

related to the amount of transported area was proposed as the stability criterion in regular 

waves [Rainey, et al, 1990] [Rainey and Thompson, 1991].  

This value becomes a random variable for irregular seas. Therefore, Hsieh, Troesch and 

Shaw [1994] proposed to use its averaged value as a criterion. It can be calculated using 

the Monte-Carlo method; however, this is a very large amount of calculations, because all 

initial conditions have to be checked at each time step. Since the safe basin becomes 

fractal, we may need a fine mesh to reach necessary accuracy, so the calculation 

procedure may be expensive. 

Instead, the Melnikov function can be used. It gives the distance between invariant 

manifolds; when the Melnikov function is positive, the area, enveloped by it got 

transported out of the safe basin. If we integrate the positive parts of the Melnikov 

function over the time, we obtain a measure of capsizing danger for this particular ship in 

this specific environment. : This criterion also has a geometrical interpretation: it is a rate 

of flux in the phase plane. Following derivations in [Hsieh, et al, 1994] we write:

)(
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lim 00 dMf
T

T

T

pos
T

 (9.158) 

Auxiliary function )(xf pos  is introduced to pick up only the positive part of the Melnikov 

function:
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x
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xf pos  (9.159) 

As we already mentioned, Hsieh, et al [1993] has shown that the Melnikov function is an 

ergodic process, so expression (9.158) can be considered as an average of the positive 

part of the Melnikov function and can be expressed not only over time, but also using the 

probability distribution: 
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Here, fG and FG are Gaussian probability densities and their integrals are as follows: 
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Jiang, Troesch and Shaw [1996] carried out further development of this technique, 

generalizing it for the case of a biased ship. 

The Melnikov function was used to study chaotic roll response in irregular seas [Lin and 

Yim, 1996]. The probability distribution was obtained with the Fokker-Plank-

Kholmogorov equation. 

Vishnubhota, Falzarano and Vakakis [2000, 2001] developed another method to predict 

capsizing in irregular seas. This method is based on direct calculation of stable and 

unstable invariant manifolds, using the perturbation technique with the Duffing equation 

(9.147) as a zero-order expansion. A probabilistic study based on the Melnikov function 

is described in Chapter 7 and 8 of [Shlesinger and Swean, 1998]. 

Further developments of application of Nonlinear Dynamic for study of capsizing in 

irregular seas included consideration of the Lyapunov exponent, see [McCue, et al,

2006].

9.2.8 Markov Processes Application 

We briefly introduced Markov processes in subchapter 8.6.4, while considering the 

probabilistic qualities of nonlinear roll. The main motivation of application of Markov 

processes was an opportunity to get distribution density as a solution of the Fokker-

Planck-Kholmogorov equation. There is another aspect of Markov processes that may be 

applicable for the probabilistic study of capsizing - distribution of time to reach the 

boundary.

As we discussed in subchapter 9.1.1 the crossing problem is directly related with 

probability of capsizing. Crossing theory (subchapter 9.1.2) gives the mean value for the 

number of crossings without special assumptions. To get the time before crossing 

(subchapter 9.1.4), we had to assume that the crossings are a Poisson flow (subchapter 

9.1.3), which imposes additional assumptions. The theory of Markov processes allows 

getting the time before reaching the boundary without additional assumptions; it is 

sufficient to consider the “carrier” process as a Markov process [Sveshnikov, 1968]. 

Let us look for the probability that within time interval ];[ tt , the Markov process U

would not reach the boundary that is located at u1 and u2:

21 )( utxu  (9.162) 

Consider the distribution density of probability that the process x(t) belongs to the 

range ],[ dxxx  and during given interval ];[ tt  never has approached the boundaries 

u1 or u2: ),( xTp . The probability that the process would never reach the boundaries 

during time period T is expressed then with the following integral: 

dxxTpTP

u

u

2

1

),()(  (9.163) 
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The fact that we are interested in the time to reach the boundary cannot change 

probabilistic qualities of the process. So, before the process crosses the boundary, both 

distribution ),( xp  and conditional distribution ),;,( yxtf  (see subchapter 8.6.4) are 

governed by the same Fokker-Planck-Kholmogorov equation (8.264): 

0),(
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2
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y

fya
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Once the boundary is crossed, ),( xp  becomes zero, since the process is no longer 

within the given boundaries. This is actually a new boundary condition for (8.264): 

tupup for0),(),( 21  (9.164) 

Initial conditions for ),( xp  may be defined as a delta-function if we need to start from a 

specific value of x, or just any given distribution, if vice versa. 

This approach, also known as the “first passage” method, was used by several 

researchers. Cai, Yu and Lin [1994] considered total energy of the system as a Markov 

process and found the time before capsizing. Shen and Huang [2000] studied the same 

problem, but they were considering rolling as a Markov process. A comprehensive study 

of the subject can be found in Chapter 5 of [Shlesinger and Swean, 1998]. 

9.3 Probability of Capsizing in Following Seas and Risk Caused by Breaking Waves 

9.3.1 Classical Definition of Stability and Pure Loss of Stability 

The classical definition of stability in a probabilistic sense is associated with upcrossing 

of the separatrix by the multidimensional stochastic process (subchapter 9.2.2). 

Association with an upcrossing event is important, because it allows relating capsizing 

probability with time through the Poisson flow of random events.  

This problem becomes more complex in following and quartering seas: a changing GZ
curve in time actually adds one more stochastic process into the roll model. As a result, 

the separatrix also becomes stochastic. : 

We already introduced the model of roll in following and quartering irregular seas 

(subchapter 8.4.3), equation (8.209). Here, we just added wind action FA:

)()(),,(2)( 44 tFtGMmgtGZmgNaI AWGxx  (9.165) 

Here N  is the linearized roll damping coefficient. 

While surging, that influences the GZ curve, is described in subchapter 8.4.2 by the 

equation (8.200):

 ),()()()( 11 GwGsGsG tFvTvRmM

Following [Umeda, et al, 1990] [Umeda and Yamakoshi, 1993], we use the effective 

wave concept, which was described in subchapter 8.4.3. As a result, the GZ curve now 

depends only on the amplitude of the effective wave, which is also a stochastic figure. 

This significantly simplifies the problem: otherwise we would have to consider at least 
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three stochastic processes: height of the wave, length of the wave and ship position 

relative to the wave:  

)())(,(2)( 44 tGMmgtGZmgNaI Eeffxx  (9.166) 

As it is known, surging may increase the danger of capsizing in following and quartering 

seas. Usually, when a ship reaches the wave crest, surging velocity experiences a 

minimum. As a result, the ship spends more time on the wave crest, where stability is 

decreased. Umeda, et al [1990] proposed to approximate effective wave modulation with 

rectangle pulses, see fig. 9.17. 

Duration of the pulse is approximated as: 
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The approximation of modulation is: 
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Here, *

eff  is the effective wave height as we have described it in subchapter 8.4.3. 

The classical definition of 

stability associates capsizing 

with crossing of the separatrix by 

the phase trajectory of roll 

motion. The influence of the 

following/quartering irregular 

seas is stochastic changes of the 

GZ curve and therefore, the 

separatrix becomes a stochastic 

process. The GZ curve depends 

on two random figures: effective 

wave height and surging 

velocity, so the separatrix also 

depends on them. As a result, 

capsizing is defined by a combination of four stochastic processes: roll angle and 

velocity, surging velocity and effective wave:

),,,(
,,,,,,1)(

GeffSb
GeffGeff ddddfXP  (9.170) 

To calculate the probability of capsizing, we need to know the joint distribution of all the 

above stochastic processes. As we have seen from subchapter 8.6.2, the joint distribution 

of roll angle and velocity can be assumed Gaussian if the GZ curve does not have an S-

Fig. 9.17 Approximation for surging influence on 

effective wave [Umeda, 1990] 
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shaped form. The distribution of effective wave and surging velocity also can be assumed 

normal [Umeda, et al, 1990], [Umeda and Yamakoshi, 1993]. Therefore the joint 

distribution ,,, Gefff  also can be assumed Gaussian and then the only thing we 

need to know is the covariation matrix. Elements of the covariation matrix can be easily 

estimated if we use any linearization technique for roll angles, surging and roll velocities. 

The linearization technique allows presenting these processes as a Fourier series and 

effective wave is already in this form (subchapter 8.4.3). Once stochastic processes are 

presented in Fourier form, calculation of their correlation is easy, see subchapter 8.3.2. 

Then, integration of the formula (9.170) should not meet any theoretical difficulties. 

However, the result may be too close to zero to be used for practical purposes. The reason 

is that a ship meets serious danger of capsizing only when she encounters a wave crest 

and her stability is significantly decreased. Therefore, the conditional probability of 

capsizing on the wave crest is more practical. Umeda, et al [1990], proposed a method to 

estimate this probability. 

9.3.2 Piecewise Linear Method 

Here, we try to extend the piecewise linear method (see subchapter 9.2.4) for calculating 

the probability of capsizing in following and quartering seas [Belenky, 1999a, 2000b]. 

Consider roll in following and quartering irregular seas (subchapter 8.4.3), equation 

(8.209). Here, surging influence is not included, trying to simplify the model for 

qualitative study. 

)(),(2)( 44 tGMmgtGZmgNaI Wxx  (9.171) 

Here N  is the linearized roll damping coefficient. 

The GZ curve here is a two-dimensional stochastic process. Its piece linear presentation 

therefore, is a surface that consists of many flat panels. The simplest way to perform such 

penalization is by using peaks of the GZ curve and angles of vanishing stability. These 

figures are, indeed, stochastic processes: a sample of their realization is presented in fig. 

9.18.

Fig. 9.18 Elements of GZ curve as stochastic processes [Belenky, 2000b] 
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Following the idea of combined piecewise linear – numerical method (subchapter 9.2.5), 

we make a piecewise linear presentation for the decreasing part of the GZ curve only, 

leaving the rest in its original nonlinear form: 
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 (9.172) 

The peak of the GZ curve is presented as a broken line: 
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The resulting 2-dimensional piecewise linear presentation is shown in fig. 9.19. 

Fig. 9.19 Piecewise linear presentation of decreasing part of GZ curve in following or quartering seas 

[Belenky, 2000b] 

All coefficients in formulae (9.172) and (9.173) are discrete stochastic processes. Their 

probabilistic characteristics were considered in [Belenky, 2000b]. It was found that they 

may be ergodic processes; distributions, however, are not Gaussian. 

Let us focus on the roll motions at decreasing part of the GZ curve: 

)()(2)( 44 tGMmgctbamgNaI Wiiixx  (9.174) 

The solution of (9.174) does not meet any difficulties: 

iiiiii qtqtptBtAt 2121 )()exp()exp()(  (9.175) 

Here p(t) is a particular solution corresponding to wave excitation. Let us try to formulate 

capsizing conditions for (9.175). To do this, let us introduce the “line of no return” (LNR) 

v(t)

GZ( ,t)

t

max(t)
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that is the border between the decreasing part and another increasing part adjacent to 

upside – down equilibrium. 

The solution (9.175) has three possibilities: immediate capsizing that is associated with 

crossing of LNR (trajectory 1 at Fig. 9.20), returning and downcrossing (trajectory 2) and 

escape from this range (trajectory 3). The same possibilities exist at the next range 

(trajectory 4 for capsizing, trajectory 5 for downcrossing and trajectory 6 for the next 

escape).

Figure 9.20 Possible variants of behavior at decreasing part of the GZ curve [Belenky, 2000b] 

Following Belenky [1993], let us consider the sign of arbitrary coefficient A of solution 

(9.175). However, a positive sign for A is not enough for capsizing, because the vertical 

border of the range also exists. So, the system can cross it and escape capsizing even 

having a positive coefficient A. Therefore, an additional capsizing condition is necessary. 

Let us introduce three instances of time: tLNR is a time necessary to reach the “line of no 

return” regardless of any other borders crossed. We consider tESC as a time necessary to 

escape from the range through the vertical border calculated with the above condition. 

Finally, we define tDCR in the same way as a time necessary to reach level max and 

downcross it. We note that the first figure makes sense only if the coefficient A is 

positive, the third one if it is negative, and the second one – in both cases. Using this 

time, the capsizing condition can be formulated in the following manner:  
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Then, probability of capsizing after time t can be expressed as:

...)|()()|()()(
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  (9.177) 

Here Yi is an event of immediate capsizing at the range [ti; ti+1[; Ei is event of escape from 

this range through a vertical border. The probability of capsizing after upcrossing is 

expressed by a theoretically infinite series. However, the series seems to converge 

quickly because of exponential functions in the solution (9.175) that try to take the 

system away from the decreasing part of the GZ curve. The probability of immediate 

capsizing after upcrossing formally can be presented as: 

 )()0()( ESCLNRi ttPAPYP  (9.178) 

Figures A, tLNR and tESC are random values, they can be considered as deterministic 

functions of random initial conditions at upcrossing ),( crcr if we assume particular 

solution p(t) is small in comparison with the other terms in (9.175) (subchapter 8.2.4). 

Let us introduce random vector ),,( tmlB . To proceed with probability (9.178) we 

need the joint conditional distribution of initial conditions at upcrossing, assuming the 

last one as a random event that mdttldttmtlt crcrcrcr )()(and))( , 

where tcr< t is a time of crossing. Having in mind that dt is small, the probability of this 

event can be expressed as: 
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Taking into account that mtlt crcrcr )( :
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Having in mind independence of roll angle and velocity and that upcrossing can happen 

with any positive roll velocity: 
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We can see from fig. 9.20 that some special trajectories can be found, - they are shown in 

bold. Trajectory 7 originates with the lowest upcrossing velocity that leads to capsizing 

defined here as )( cr

u

cr  and can be easily found from (9.175) using the condition 
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With: lmtttt crcrcrcrLNR /)()( . Then probability (9.178) can be easily 

found as:

1max

max )(

),()(
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i cr
u
cr

crcrcrcri ddfYP  (9.183) 

The probability of escape through vertical border P(Ei) can be found analogously, using 

trajectory 8 at fig. 9.20 to find the lowest possible initial upcrossing velocity to escape. 

To complete our study of conditional probability of capsizing after upcrossing at i
th

range, we need to consider behavior of the system at range i+1 after it escapes through 

the vertical border. 

This problem is analogous to the previous one; the only difference is the distribution of 

initial conditions at moment t )|,( Bf II

cr

II

cr .

Consider random vectors ),( crcrC  and ),( II

cr

II

crG . Then consider a vector valued 

function GCF )( , and we can formulate a problem of multivariate probability 

transformation since the distribution of C  is known from formula (9.181): 

))(())((det)( 11 GFfGFJGf  (9.184) 

Where J(..) is the Jacobean determinant and F
-1

 denotes the inverse of the vector valued 

function F. The inverse problem here does not have an analytical solution, but a simple 

numerical one exists. We consider solution (9.175) back in time: starting at the moment 

t with initial conditions ),( II

cr

II

cr  and going back in time to tcr and ),(
crcr
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Again:

lmtt crcrLNR /)(   (9.186) 

We can find cr from (9.185) using any numerical method for nonlinear algebraic 

equations. The initial point could be found from (9.185) by expanding exponential 

functions into a power series.

As soon as cr is found, calculation of tLNR and cr  (just differentiation of (9.185)) is no 

problem. The Jacobean matrix can be deduced analytically from (9.185) and its 

derivative:
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The Jacobean matrix does not depend on initial conditions: this is a corollary of linearity 

of solution (9.175) or (9.185) vs. initial conditions.  Further derivations in order to find 
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)|( 1 iy EYP  are analogous to P(Yi) – just using trajectories 9 and 10 of fig.9.20 to find the 

limits of integration.  

The last problem to consider is the probability of upcrossing ),( max tP . So far, we 

used a Poisson distribution for beam seas (subchapters 9.2.4 and 8.2.5). However, this 

could be questionable for quartering seas, because decreasing of stability upcrossing 

could happen more often and after-action influence could be significant. Some options 

are considered in [Belenky, 2000b]. 

9.3.3 Probability of Surf-Riding 

As we have seen from Chapter 6, broaching is another possible cause of capsizing in 

following and quartering seas. Some (not all) broaching scenarios presume that a ship 

first experiences surf-riding. Here, we consider a method of estimation for the probability 

of surf-riding developed by Umeda [1990]. 

There are two modes of surf-riding in regular waves (subchapter 6.3): surf-riding with 

any initial conditions and co-existence of periodic surging and surf-riding. The latter case 

also can be called as surf-riding with specific initial conditions.  

It means that a random event of surf-riding can happen in two ways: an encounter with 

such a wave that leads to surf-riding with any initial conditions. Another way is to 

encounter a wave that leads to surf-riding only with specific initial conditions while 

having them: 

 ),(),|()()( 21 GGGG PSRPSRPYP  (9.188) 

Umeda [1990] used an envelope presentation of irregular waves assuming the spectrum 

to be narrow banded. We considered an envelope presentation in subchapter 8.1.6 and its 

application for waves in subchapter 8.2.4: 

)(cos)()( tttAt aW  (9.189) 

Presentation (9.189) enables us to assume that surf-riding in irregular seas would happen 

when a ship heading with a speed corresponding to Fncr2 (see subchapter 6.3.5) would 

encounter the wave with the length LWS and height HWS that satisfy surf-riding condition 

in regular seas.  

Umeda [1990] used distributions of wave periods and heights [Longuet-Higgins, 1983] 

and approximated local wave period as: 
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With corresponding length through the well-known formulae of small wave theory: 
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Local wave height, then can be presented as a doubled amplitude: 

 )(2)( tAtHW  (9.192) 
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Now, let us express the elements of the envelope presentation through characteristics of 

the wave: 

a

WL

g2
 (9.193) 

WW HAHA 5.0;5.0  (9.194) 

These formulae allow expressing distribution of elements of the envelope presentation in 

terms of characteristics of the wave (formula (8.38) from subchapter 8.1.6): 
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The probability of surf-riding with any initial condition, then can be expressed as: 
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Here, Lmax and Lmin are the largest and smallest wave length that can cause surf-riding. 

)( WWc LH  is the critical height for the wave of given length that causes surf-riding with 

any initial conditions. 

A description of the method of calculation of probability of surf-riding under specific 

initial conditions can be found in [Umeda, 1990]. 

9.3.4 Risk of Capsizing Caused by Breaking Waves 

We have considered the action of a breaking wave on a ship in subchapter 7.3. Due to a 

lack of theoretical knowledge of the hydromechanics of breaking waves, a model test is 

still the main tool to judge upon stability in breaking waves. 

Based on extensive model testing followed the capsizing of M/V “Helland Hansen” 

[Dahle and Kjaerland, 1980], Dahle, Myrhaug and Dahl [1988] developed a method to 

estimate risk of capsizing caused by breaking waves. Risk is measured with the 

probability of capsizing per year: 

 )|()()( WXPWPXP  (9.197) 

Where P(W) is the probability to encounter a dangerous wave and P(X|W) is the 

conditional probability of capsizing if such a wave is encountered. 

The first figure is expressed as: 

j k

jkkjjkjkjk PPWPPWP 4321)(  (9.198) 

Here:

Index j is for significant wave heights. Dahle and Myrhaug [1993] used 12 groups. 

Index k is for zero-crossing period, 11 used in the above reference. 
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P1jk is a probability of dangerous wave direction. Value 5.01 jkP  was used for the 

sample calculation in [Dahle and Myrhaug, 1993], [Dahle, et al, 1995]. 

P2jk is yearly fraction of time to exposure sea state defined by the indexes j and k.

Wjk is a value defined with the following formula: 
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t

tt
W
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 (9.199) 

With tjk is time of exposure in sea state defined by the indexes j and k; jk is duration of 

the sea state. It is defined with the following formula: 

hrs,87.1

Sjjk H  (9.200) 

P3jk is the conditional probability of steep (crest front steepness more than 0.25) and high 

waves for the sea state defined by the indexes j and k. This value can be found from wave 

statistics and it is region-specific. Sample data for the Norwegian sea [Dahle and 

Myrhaug, 1993], Baltic sea and North East Pacific [Dahle, et al, 1995] are given in tables 

9.4 and 9.5 correspondingly. 

P4jk is the joint probability of the sea state defined by the indexes j and k. Such data is 

available from wave statistics [Hogben, et al, 1986]. 

Table 9.4 Probability of occurrence per season of steep ( > c=0.25) and high (H>Hc) waves for 

Norwegian seas [Dahle and Myrhaug, 1993] 

Season Hc, m 2 3 4 

March to May 0.00419 0.00256 0.00156 

June to August 0.00202 0.000819 0.000336 

September to November 0.00286 0.00166 0.000943 

December to February 0.00284 0.00171 0.00102 

Annual 0.00298 0.00169 0.000965 

Table 9.5 [Dahle, et al, 1995] 

Area Season 

5

Baltic sea 

Dec. to 

March

0.00048

April to 

May

0.00046

June to 

August

0.00027

Sept. to 

Nov.

0.00049

Annual

0.00043

19

North Pacific Ocean 

(Between Sakhalin 

and Hokkaido) 

Dec. to 

Feb.

0.0011

March to 

May

0.0012

June to 

August

0.00044

Sept. to 

Nov.

0.00090

Annual

0.00091

20

North Pacific Ocean 

(South of Kamchatka 

peninsula)

Dec. to 

Feb.

0.0013

March to 

May

0.0010

June to 

August

0.00042

Sept. to 

Nov.

0.0011

Annual

0.00096
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The second term in the equation (9.197) is defined as: 

765)|( PPPWXP  (9.201) 

Here:

P5 is the probability of encounter by a dangerous wave during the part of the roll period 

when a ship is the most susceptible. A value 5.05P  was used for the sample calculation 

in [Dahle and Myrhaug, 1993]. 

P6 is the conditional probability of capsizing, when the vessel encountered the breaking 

wave. Model test data has to be used to determine this value. Dahle and Myrhaug [1993, 

1997], Dahle, et al [1995] used results of the model test [Dahle and Kjaerland, 1980], see 

fig. 9.21. If the area under the GZ curve makes a point in a safe area on fig. 9.21, then it 

is assumed that ship is “safe” and 06P . Otherwise, the ship is unsafe and 16P .

P6 is the conditional probability of good seamanship. Compliance to the requirements 

should decrease the risk. This is the place to put a numerical estimate of influence of 

human factors. 

Fig. 9.21 Safe and unsafe regions from model tests [Dahle and Kjaerland, 1980] 

There are a number of sample calculations available from [Dahle and Myrhaug, 1993] – 

for the Norwegian Sea, [Dahle, et al, 1995] for the Baltic Sea and Northeast Pacific and 

[Dahle and Myrhaug, 1997] for the Black Sea. The cited references also contain some 

suggestions for risk management. In general, these works show good examples of 

complete and simple methods for capsizing risk analysis for ships in real seas. 
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Appendix I 

Nechaev Method
1

The method [Nechaev, 1978, 1989] is based on a series of model tests conducted at the 

National Laboratory of Seakeeping of Fishing Vessels at Kaliningrad Institute of 

Technology (Russia). Results of these experiments were presented in a form of regression 

polynomials. Using these polynomials, it is possible to estimate GZ curves on the wave 

crest and at the wave trough, if the length of the wave is not very far from the length of 

the ship. Usage of the method is limited by the following ship parameter values: 

3 2 8 00. .L B 92.05.0 CWCB

2.40.2 dB 85.05.0 CMCB

2.205.1 dD 015 0 45. .Fn

Here: L is length (between perpendiculars), B is breadth molded, d is draft, D is depth, 

CB is block coefficient, CW is water plane coefficient, CM is midship coefficient and 

Fn is Froude number. The GZ curve when the ship is located on the wave crest is 

expressed as: 

17

1

)()()()(
i

CiiCC fAFBGZGZ  (A.1) 

Here:

FC  are the basic values for wave crest, see tables A.1-A.4; 

fCi  are the influence functions, see tables A.9-A.12; 

Ai is a set of numbers expressing influence of ship parameters that differ from the basic 

model:

A1 = L/B - 4.82 A A7 1

2 A13 = A2  A4

A2 = B/T - 2.67 A A8 2

2 A14= A1  A6

A3 = H/T - 1.3 A A9 3

2 A A15 1

3

A4 = CB/ Cw - 0.7 A A10 5

2 3

316 AA

A5 = CB/ CM - 0.692 A A11 6

2 3

517 AA

A6 = Fn - 0.28 A12 = A1  A2

                                                          
1 The author is grateful to Prof. Nechaev for fruitful discussions of the materials in this Appendix and for 

supplying a corrected version of the regression coefficients. Additional corrections were made by 

Prof. Nechaev during preparation of the second edition, his help is greatly appreciated.
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The GZ curve, when the ship is on the wave trough, can be expressed as: 

GZ GZ B F A fT T i Ti
i

( ) ( ) ( ) ( )
1

17

 (A.2) 

Here:

FT  are the basic values for wave trough, see tables A.5-A.8; 

fTi  are the influence functions, see tables A.13-A.16; 

Basic values for wave crest and trough are given in Tables A.1-A.8 for different values of 

wave steepness. The latter is defined as: 

wwhst /  (A.3) 

Here hw is wave height and w is wave length. If the wave length is different from cosL ,

were  is wave direction, the following correction has to be used: 

3

3

2

211 kkkCorr  (A.4) 

Here, w is the wave length, 1/ Lw  is the non-dimensional relative wave length, ki

are coefficients from table A.17. 

Example calculations are shown in tables A.18 and A.19. 

Table A.1 Basic values for wave crest, 
210CF , wave direction = 0

0

Angle of heel Wave 
Steepness 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

0.03 -0.38 -0.58 -0.80 -0.92 -0.86 -0.75 

0.04 -0.42 -0.74 -1.11 -1.30 -1.20 -1.05 

0.05 -0.48 -0.92 -1.50 -1.70 -1.60 -1.42 

0.06 -0.60 -1.12 -1.78 -1.98 -1.87 -1.70 

0.07 -0.70 -1.31 -1.97 -2.15 -2.06 -1.90 

0.08 -0.77 -1.45 -2.13 -2.30 -2.33 -2.06 

0.09 -0.85 -1.56 -2.28 -2.42 -2.35 -2.20 

0.10 -0.90 -1.65 -2.41 -2.55 -2.48 -2.35 

0.11 -0.95 -1.75 -2.50 -2.65 -2.59 -2.43 

Table A.2 Basic values for wave crest, 
210CF , wave direction = 15

0

Angle of heel Wave 
Steepness 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

0.03 -0.40 -0.53 -0.67 -0.74 -0.67 -0.57 

0.04 -0.53 -0.68 -1.00 -1.08 -1.00 -0.80 

0.05 -0.66 -0.86 -1.27 -1.37 -1.27 -1.04 

0.06 -0.75 -1.08 -1.46 -1.60 -1.46 -1.22 

0.07 -0.87 -1.24 -1.61 -1.68 -1.61 -1.40 

0.08 -0.97 -1.36 -1.75 -1.90 -1.75 -1.53 

0.09 -1.05 -1.47 -1.88 -2.02 -1.88 -1.65 

0.10 -1.10 -1.56 -1.97 -2.12 -1.97 -1.78 

0.11 -1.03 -1.67 -2.06 -2.21 -2.06 -1.85 
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Table A.3 Basic values for wave crest, 
210CF , wave direction = 30

0

Angle of heel Wave 
Steepness 10

0
20

0
 30

0
 40

0
 50

0
 60

0

0.03 -0.48 -0.42 -0.50 -0.60 -0.46 -0.48 

0.04 -0.60 -0.54 -0.79 -0.80 -0.68 -0.60 

0.05 -0.70 -0.67 -1.00 -0.93 -0.80 -0.70 

0.06 -0.80 -0.80 -1.17 -1.09 -0.93 -0.80 

0.07 -0.88 -0.90 -1.30 -1.22 -1.03 -0.88 

0.08 -0.93 -1.03 -1.42 -1.37 -1.12 -0.93 

0.09 -1.02 -1.14 -1.50 -1.43 -1.20 -1.02 

0.10 -1.10 -1.28 -1.60 -1.48 -1.24 -1.10 

0.11 -1.18 -1.41 -1.67 -1.50 -1.29 -1.18 

Table A.4 Basic values for wave crest, 
210CF , wave direction = 45

0

Angle of heel Wave 
Steepness 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

0.03 -0.34 -0.41 -0.50 -0.45 -0.37 -0.34 

0.04 -0.42 -0.49 -0.71 -0.63 -0.51 -0.42 

0.05 -0.53 -0.70 -0.82 -0.78 -0.64 -0.53 

0.06 -0.62 -0.83 -0.98 -0.91 -0.75 -0.62 

0.07 -0.70 -0.91 -1.10 -1.00 -0.82 -0.70 

0.08 -0.80 -1.00 -1.20 -1.08 -0.90 -0.80 

0.09 -0.84 -1.08 -1.30 -1.17 -0.96 -0.84 

0.10 -0.90 -1.17 -1.37 -1.22 -1.00 -0.90 

0.11 -0.98 -1.20 -1.42 -1.26 -1.03 -0.98 

Table A.5 Basic values for wave trough, 
210TF , wave direction = 0

0

Angle of heel Wave 
Steepness 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

0.03  0.12  0.32  0.43  0.30  0.04 -0.18 

0.04 0.23  0.45  0.62  0.42  0.08 -0.24 

0.05  0.31  0.54  0.74  0.51  0.11 -0.31 

0.06  0.38  0.61  0.83  0.58  0.12 -0.40 

0.07  0.43  0.64  0.91  0.61  0.11 -0.48 

0.08  0.46  0.71  0.96  0.63  0.08 -0.57 

0.09  0.48  0.76  1.02  0.64  0.04 -0.66 

0.10  0.49  0.78  1.07  0.65  0.00 -0.79 

0.11  0.50  0.79  1.10  0.68 -0.05 -0.88 
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Table A.6 Basic values for wave trough, 
210TF , wave direction = 15

0

Angle of heel Wave 
Steepness 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

0.03  0.18  0.30  0.38  0.25  0.03 -0.15 

0.04  0.27  0.40  0.52  0.28  0.06 -0.17 

0.05  0.36  0.47  0.63  0.32  0.09 -0.19 

0.06  0.41  0.52  0.72  0.38  0.09 -0.22 

0.07  0.46  0.60  0.81  0.41  0.09 -0.28 

0.08  0.50  0.63  0.84  0.43  0.06 -0.32 

0.09  0.54  0.68  0.89  0.45  0.03 -0.41 

0.10  0.57  0.72  0.93  0.48  0.00 -0.50 

0.11  0.59  0.76  0.97  0.50 -0.04 -0.60 

Table A.7 Basic values for wave trough, 
210TF , wave direction = 30

0

Angle of heel Wave 
Steepness 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

0.03  0.22  0.22  0.29  0.17  0.02 -0.01 

0.04  0.31  0.31  0.38  0.21  0.04 -0.12 

0.05  0.37  0.37  0.46  0.23  0.06 -0.14 

0.06  0.42  0.42  0.51  0.27  0.06 -0.16 

0.07  0.46  0.46  0.58  0.30  0.06 -0.18 

0.08  0.48  0.48  0.61  0.32  0.04 -0.20 

0.09  0.52  0.52  0.63  0.33  0.02 -0.22 

0.10  0.53  0.53  0.66  0.34  0.00 -0.28 

0.11  0.55  0.55  0.67  0.35 -0.03 -0.34 

Table A.8 Basic values for wave trough, 
210TF , wave direction = 45

0

Angle of heel Wave 
Steepness 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

0.03  0.17  0.20  0.20  0.14  0.14 -0.08 

0.04  0.20  0.28  0.28  0.18  0.18 -0.09 

0.05  0.23  0.33  0.33  0.20  0.20 -0.10 

0.06  0.30  0.38  0.38  0.22  0.22 -0.11 

0.07  0.34  0.42  0.42  0.23  0.23 -0.12 

0.08  0.38  0.46  0.46  0.24  0.24 -0.14 

0.09  0.40  0.50  0.50  0.25  0.25 -0.18 

0.10  0.42  0.52  0.52  0.26  0.26 -0.22 

0.11  0.43  0.54  0.54  0.27  0.27 -0.27 
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Table A.9 Influence functions for wave crest 
210Cif , wave direction = 0

0

Angle of heel Index of 
function 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

1 -0.2 -0.36 -0.45 -0.38 -0.3 -0.25 

2 -0.35 -0.85 -1.03 -0.73 -0.36 -0.3 

3  1.25  2.0  2.2  1.56  1.1  0.9 

4  0.4  0.7  1.0  1.48  1.8  2.0 

5  1.92  2.68  3.58  4.5  4.96  4.4 

Fn<0.28  2.6  4.7  5.0  4.2  3.6  3.4 
6

Fn>0.28 -2.74 -3.6 -2.86 -2.2 -1.86 -1.74 

7  0.05  0.09  0.106  0.070  0.0016  0.0 

8 -0.08 -0.13 -0.096 -0.032 -0.006  0.0 

9  -0.8 -1.5  -1.98  -1.710  -1.26  -1.120 

10 -0.4 -3.8 -12.0 -26.0 -40.0 -38.8 

11  1.83  2.37  2.02  1.67  1.48  1.4 

12 -0.5 -0.9 -1.08 -0.8 -0.52 -0.4 

13 -2.44 -2.7 -1.8 -0.8 -0.26  0.0 

14 -0.44 -0.8 -0.88 -0.64 -0.5 -0.48 

15  -0.0136  -0.0221  -0.0188 -0.0119  -0.0055  -0.0035 

16 0.092 0.107 0.58 0.67 0.46 0.32 

17 30 100 260 350 380 345 

Table A.10 Influence functions for wave crest 
210Cif , wave direction = 15

0

Angle of heel Index of 
function 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

1 -0.232 -0.331 -0.392 -0.304 -0.210 -0.165 

2 -0.406 -0.782 -0.896 -0.584 -0.252 -0.198 

3  1.450  1.840  1.914  1.248  0.770  0.594 

4  0.464  0.644  0.870  1.184  1.216  1.320 

5  2.227  2.466  3.115  3.600  3.472  2.904 

Fn<0.28  3.016  4.324  4.350  3.360  2.520  2.244 
6

Fn>0.28 -3.178 -3.312 -2.488 -1.760 -1.302 -1.148 

7  0.058  0.083  0.092  0.056  0.011  0 

8 -0.093 -0.120 -0.083 -0.026  0.004  0 

9 -0.812  -1.380 -1.723  -1.368  -0.882  -0.739 

10 -0.464 -3.496 -10.440 -20.80 -26.04 -26.928 

11  2.123  2.180  1.757  1.336  1.036  0.924 

12 -0.580 -0.830 -0.939 -0.640 -0.364 -0.264 

13 -2.830 -2.484 -1.566 -0.640 -0.182  0 

14 -0.510 -0.736 -0.766 -0.512 -0.350 -0.317 

15  -0.0158  -0.0203  -0.0164  -0.0095  -0.0039  -0.0023 

16 0.107 0.098 0.5 0.536 0.322 0.211 

17 34.8 92 226.2 280 266   227.7 
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Table A.11 Influence functions for wave crest 
210Cif , wave direction = 30

0

Angle of heel Index of 
function 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

1 -0.212 -0.263 -0.270 -0.194 -0.126 -0.095 

2 -0.371 -0.621 -0.618 -0.372 -0.184 -0.114 

3  1.325  1.460  1.320  0.796  0.462  0.342 

4  0.424  0.511  0.620  0.755  0.790  0.760 

5  2.035  1.956  2.148  2.300  2.083  1.678 

Fn<0.28  2.756  3.431  3.000  2.142  1.840  1.292 
6

Fn>0.28 -2.904 -2.628 -1.716 -1.122 -0.781 -0.661 

7  0.053  0.066  0.064  0.036  0.007  0 

8 -0.085 -0.095 -0.058 -0.016 -0.003  0 

9  -0.742  -1.095  -1.188  -0.872  -0.660  -0.426 

10 -0.424 -2.774 -7.200 -13.26 -15.620 -15.500 

11  1.940  1.730  1.212  0.852  0.622  0.532 

12 -0.530 -0.657 -0.648 -0.408 -0.218 -0.152 

13 -2.586 -1.971 -1.080 -0.408 -0.109  0 

14 -0.466 -0.584 -0.528 -0.326 -0.210 -0.184 

15  -0.0144  -0.0161  -0.0113  -0.0061  -0.0023  -0.0013 

16 0.0975 0.0781 0.4 0.341 0.193 0.122 

17  31.8 73 156 178.5 159.6 131.1 

Table A.12 Influence functions for wave crest 
210Cif , wave direction = 45

0

Angle of heel Index of 
function 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

1 -0.180 -0.227 -0.216 -0.152 -0.102 -0.075 

2 -0.315 -0.536 -0.494 -0.292 -0.122 -0.090 

3  1.125  1.260  1.056  0.624  0.374  0.270 

4  0.360  0.441  0.480  0.592  0.639  0.600 

5  1.728  1.688  1.718  1.800  1.686  1.320 

Fn<0.28  2.340  2.961  2.400  1.680  1.224  1.020 
6

Fn>0.28 -2.466 -2.270 -1.373 -0.880 -0.632 -0.522 

7  0.045  0.057  0.051  0.028  0.005  0 

8 -0.072  -0.082 -0.046 -0.013 -0.002  0 

9  -0.630  -0.945  -0.950  -0.684  -0.428  -0.336 

10 -0.360 -2.394 -5.760 -10.40 -12.650 -12.240 

11  1.647  1.493  0.970  0.668  0.503  0.420 

12 -0.450 -0.567 -0.518 -0.320 -0.177 -0.120 

13 -2.196 -1.701 -0.864 -0.320 -0.088  0 

14 -0.396 -0.504 -0.422 -0.256 -0.170 -0.144 

15  -0.0122  -0.0139  -0.0090  -0.0048  -0.0019  -0.0011 

16 0.0828 0.0674 0.383 0.268 0.156 0.096 

17 27 63 124.8 140 129.2 103.5 
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Table A.13 Influence functions for wave trough 
210Tif , wave direction = 0

0

Angle of heel Index of 
function 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

1  0.016  0.04  0.078  0.138  0.164  0.15 

2  0.11  0.137  0.09 -0.03 -0.07 -0.12 

3  0.7  1.3  1.82  2.18  2.56  2.7 

4 -0.7 -1.1 -1.26 -1.03 -0.8 -0.7 

5 -0.3 -0.6 -0.78 -0.7 -0.56 -0.5 

6  0.57  1.12  1.58  1.57  1.18  1.0 

7  0 -0.005 -0.01 -0.025 -0.037  -0.035 

8  0.05  0.032  0.014  0.006  0.003  0 

9  0.18  0.78  1.3  1.64  1.8  1.78 

10  0  0  0  0  0  0 

11 -1.16 -1.63 -1.84 -1.83 -1.6 -1.46 

12 -0.1 -0.7 -1.1 -1.35 -2.2 -3.65 

13  0  0  0  0  0  0 

Fn<0.28 -1.47 -2.29 -2.54 -2.53 -2.3 -2.15 
14

Fn>0.28  0.78  1.55 1.93  1.75  1.28  1.02 

15  0  0  0  0  0  0 

16 -0.65 -1.75 -2.37 -2.26 -1.5 -0.87 

17  0  0  0  0  0  0 

Table A.14 Influence functions for wave trough 
210Tif , wave direction = 15

0

Angle of heel Index of 
function 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

1  0.020  0.038  0.069  0.115  0.130  0.113 

2  0.140  0.130  0.080 -0.025 -0.055 -0.090 

3  0.889  1.235  1.620  1.809  2.022  2.025 

4 -0.889 -1.045 -1.121 -0.855 -0.632 -0.525 

5 -0.381 -0.570 -0.694 -0.581 -0.442 -0.375 

6  0.724  1.064  1.406  1.303  0.932  0.750 

7  0 -0.004 -0.008 -0.015 -0.020  -0.018 

8  0.064  0.030  0.012  0.005  0.002  0 

9  0.229  0.741  1.157  1.361  1.422  1.335 

10  0  0  0  0  0  0 

11 -1.473 -1.549 -1.638 -1.519 -1.264 -1.095 

12 -0.127 -0.665 -0.979 -1.121 -1.738 -2.738 

13  0  0  0  0  0  0 

Fn<0.28 -1.868 -2.176 -2.261 -2.100 -1.817 -1.613 
14

Fn>0.28  0.991  1.473  1.718  1.453  1.011  0.765 

15  0  0  0  0 0  0 

16 -1.20 -1.66 -2.11 -1.88 -1.19 -0.65 

17  0  0  0  0  0  0 
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Table A.15 Influence functions for wave trough 
210Tif , wave direction = 30

0

Angle of heel Index of 
function 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

1  0.020  0.032  0.052  0.080  0.084  0.072 

2  0.135  0.110  0.060 -0.017 -0.036 -0.058 

3  0.861  1.040  1.219  1.264  1.306  1.296 

4 -0.861 -0.880 -0.844 -0.597 -0.408 -0.336 

5 -0.369 -0.480 -0.523 -0.406 -0.286 -0.240 

6  0.701  0.896  1.059  0.911  0.602  0.480 

7  0 -0.003 -0.006 -0.011 -0.016  -0.014 

8  0.062  0.024  0.009  0.003  0.002  0 

9  0.221  0.624  0.871  0.951  0.918  0.854 

10  0  0  0  0  0  0 

11 -1.427 -1.304 -1.233 -1.061 -0.816 -0.701 

12 -0.123 -0.560 -0.800 -1.083 -1.122 -1.752 

13  0  0  0  0  0  0 

Fn<0.28 -1.808 -1.832 -1.702 -1.467 -1.173 -1.032 
14

Fn>0.28  0.959  1.240  1.293  1.015  0.653  0.490 

15  0  0  0  0  0  0 

16 -0.80 -1.40 -1.58 -1.31 -0.77 -0.42 

17  0  0  0  0  0  0 

Table A.16 Influence functions for wave trough 
210Tif , wave direction = 45

0

Angle of heel Index of 
function 10

o
 20

o
 30

o
 40

o
 50

o
 60

o

1 0.018  0.029  0.044  0.065  0.067  0.060 

2  0.131  0.099  0.051 -0.014 -0.029 -0.048 

3  0.770  0.936  1.037  1.025  1.203  1.080 

4 -0.770 -0.792 -0.718 -0.484 -0.328 -0.280 

5 -0.330 -0.432 -0.445 -0.329 -0.263 -0.200 

6  0.627  0.806  0.901  0.738  0.555  0.400 

7  0 -0.002 -0.004 -0.007 -0.012  -0.009 

8  0.055  0.023  0.008  0.003  0.001  0 

9  0.198  0.562  0.741  0.771  0.846  0.712 

10  0  0  0  0  0  0 

11 -1.276 -1.174 -1.049 -0.860 -0.752 -0.584 

12 -0.110 -0.504 -0.628 -0.635 -1.034 -1.460 

13  0  0  0  0  0  0 

Fn<0.28 -1.617 -1.649 -1.448 -1.189 -1.081 -0.860 
14

Fn>0.28  0.858  1.116  1.100  0.823  0.602  0.408 

15  0  0  0  0  0  0 

16 -0.72 -1.26 -1.35 -1.06 -0.71 -0.35 

17  0  0  0  0  0  0 

Table A.17 Correction coefficients for wave length not equal to cosL

k1 k2 k3

wave trough 0.87 1.20 0.21 

wave crest 0.90 1.50 0.39 



Nechaev Method 411 

Table A.18 Data for example calculations 

Length, B.P., m 40 

Breadth molded, m 9 

Draft, m 3 

Depth, 4.2 

Block coefficient CB 0.6 

Water plane coefficient, CW 0.8 

Midship coefficient, CM  0.85 

Froude Number  0.2 

Wave length w, m 70

Wave height hw, m 5 

Wave direction , deg 5

Table A.19 Example calculations 

Heel angle, deg. 10 20 30 40 50 60 

GZ curve in calm water, m 0.169 0.307 0.38 0.358 0.208 -0.101 

FC10
2

=0
0
, steepness 0.07 -0.7 -1.31 -1.97 -2.15 -2.06 -1.9 

FC10
2

=15
0
, steepness 0.07 -0.87 -1.24 -1.61 -1.68 -1.61 -1.4 

FC10
2

=5
0
, steepness 0.07 -0.757 -1.29 -1.85 -1.99 -1.91 -1.73 

FC10
2

=0
0
, steepness 0.08 -0.77 -1.45 -2.13 -2.3 -2.33 -2.06 

FC10
2

=15
0
, steepness 0.08 -0.97 -1.36 -1.75 -1.9 -1.75 -1.53 

FC10
2

=5
0
, steepness 0.08 -0.837 -1.42 -2 -2.17 -2.14 -1.88 

FC10
2

=5
0
, steepness 0.0714 -0.768 -1.31 -1.87 -2.02 -1.94 -1.75 

AifCi10
2
, =5

0
0.381 0.445 0.433 0.405 0.403 0.365 

(FC AifCi )10
2
, =5

0
-0.387 -0.86 -1.44 -1.61 -1.54 -1.39 

B (FC AifCi) -0.0348 -0.0774 -0.129 -0.145 -0.139 -0.125 

GZC =B (FC AifCi) Corr -0.0309 -0.0688 -0.115 -0.129 -0.123 -0.111 

GZC=GZ+ GZC 0.138 0.238 0.265 0.229 0.0849 -0.212 

FT10
2

=0
0
, steepness 0.07 0.43 0.64 0.91 0.61 0.11 -0.48 

FT10
2

=15
0
, steepness 0.07 0.46 0.6 0.81 0.41 0.09 -0.28 

FT10
2

=5
0
, steepness 0.07 0.44 0.627 0.877 0.543 0.103 -0.413 

FT10
2

=0
0
, steepness 0.08 0.46 0.71 0.96 0.63 0.08 -0.57 

FT10
2

=15
0
, steepness 0.08 0.5 0.63 0.84 0.43 0.06 -0.32 

FT10
2

=5
0
, steepness 0.08 0.473 0.683 0.92 0.563 0.0733 -0.487 

FT10
2

=5
0
, steepness 0.0714 0.445 0.635 0.883 0.546 0.099 -0.424 

AifTi10
2
, =5

0
0.055 0.137 0.169 0.178 0.318 0.493 

(FT AifTi )10
2
, =5

0
0.5 0.771 1.05 0.725 0.417 0.0695 

B (FT AifTi) 0.045 0.0694 0.0947 0.0652 0.0375 0.00625 

GZT =B (FT AifTi) Corr 0.03 0.0463 0.0631 0.0435 0.025 0.00417 

GZT=GZ+ GZT 0.199 0.353 0.443 0.401 0.233 -0.097 
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